今天我们开始简单的介绍数学分析这门课程,参考教材是Walter Rudin著的《Principles of Mathematical Analysis》

对于一门新课你最开始可能会问的是:这门课讲述了一个什么故事?简单的翻阅了一下这本书的目录,数学分析这一块,里边有微积分里的东西:微分法、级数、多元函数这类东西,当然也有离散数学中一些集合、关系的东西,因此,我们不能妄下论断说,数学分析就是带证明的微积分,但是,数学分析到底是讲述了一个怎样的故事呢?让我们怀揣着这个问题走进这门课。

数学作为工具性的学科,一个重要的使命就是搞清楚一些生活中习以为常的东西。比如说数这个概念,就经历了整数系->有理数系->实数系->复数系的演变过程,对数系的不断扩充,是伴随这一些问题的不断涌现。比如这里我们将举出例子会回答你这样的疑问:数学家们为什么有理数系扩充到了实数系?

在这之前,我们引入最基础的概念,有理数系分为整数系和分数系,而实数系又分为有理数系和无理数系。

承接上文,我们看到数轴上仅仅是有理数还不能够,我们需要引入无理数,构成整个实数系。通过Q(有理数系)构造出R(实数系)是一个非常繁琐的过程,本书在第一章节的章末给出。

这里基于我们从Q构造出来的R,来论证一系列定理、命题。

《Principles of Mathematical Analysis》-chaper1-实数系与复数系的更多相关文章

  1. 数学分析理论(rudin版)笔记:实数系和复数系.2:抄书版

    有理数(rational number)记为 Q,实数记为 R 虽然任意两个不同的有理数间还有一个有理数,但是有理数集中还是会有 "间隙",而实数集填补了这些间隙. 集合(set) ...

  2. 数学分析理论(rudin版)笔记:实数系和复数系.1

    导引 有理数集是"稀疏的"和"稠密的". 选择公理 考虑以下问题:容易找到两个无理数 a, b 使 a + b 为有理数,或者使 ab 为有理数,但是能否使得 ...

  3. Lecture notes of Mathematical analysis

    Lecture notes of Mathematical analysis Preliminary theory Teaching purpose: Mathematical analysis is ...

  4. "Mathematical Analysis of Algorithms" 阅读心得

    "Mathematical Analysis of Algorithms" 阅读心得 "Mathematical Analysis of Algorithms" ...

  5. 《Mathematical Analysis of Algorithms》中有关“选择第t大的数”的算法分析

    开头废话 这个问题是Donald.E.Knuth在他发表的论文Mathematical Analysis of Algorithms中提到的,这里对他的算法分析过程给出了更详细的解释. 问题描述: 给 ...

  6. Reviewing notes 2.1 of Mathematical analysis

    Chapter2 Numerical sequence and function Cartesian product set If S and T are sets,then the cartesia ...

  7. 《Mathematical Analysis of Algorithms》中有关“就地排列”(In Situ Permutation)的算法分析

    问题描述 把数列\((x_1,x_2,\cdots,x_n)\)变换顺序为\((x_{p(1)},x_{p(2)},\cdots,x_{p(n)})\),其中\(p\)是\(A=\{1,2,3,\cd ...

  8. 【分享】《美国数学本科生,研究生基础课程参考书目(个人整理)》[DJVU][VERYCD]

    目录: 第一学年 几何与拓扑: 1.James R. Munkres, Topology:较新的拓扑学的教材适用于本科高年级或研究生一年级: 2.Basic Topology by Armstrong ...

  9. FAQ: Machine Learning: What and How

    What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...

随机推荐

  1. SQL Server 索引和视图【转】

    Ø 索引 1. 什么是索引 索引就是数据表中数据和相应的存储位置的列表,利用索引可以提高在表或视图中的查找数据的速度. 2. 索引分类 数据库中索引主要分为两类:聚集索引和非聚集索引.SQL Serv ...

  2. 使用Gulp构建本地开发Web服务器

    前端模拟ajax,就需要配置web服务器(apache,iis,nginx),有点麻烦 代码有一点点修改,就需要F5刷新页面很麻烦 Gulp + Gulp-connect + watch + live ...

  3. 读书笔记之 - javascript 设计模式 - 接口、封装和链式调用

    javascript 采用设计模式主要有下面的三方面原因: 可维护性:设计模式有助于降低模块之间的耦合程度.这使代码进行重构和换用不同的模块变得容易,也使程序员在大型项目中合作变得容易. 沟通:设计模 ...

  4. 『重构--改善既有代码的设计』读书笔记---Duplicate Observed Data

    当MVC出现的时候,极大的推动了Model与View分离的潮流.然而对于一些已存在的老系统或者没有维护好的系统,你都会看到当前存在大把的巨大类----将Model,View,Controller都写在 ...

  5. Gtest打桩函数

    假设Client的定义如下 class Client { ...... public: virtual bool GetData(std::string& data); ...... }; 我 ...

  6. 关于正则表达式的转义 PHP

    如正则的函数 preg_replace($patern, $replacement, $content) 等等 其中如果 $content 中要替换 \ 成 /,必须在 $patern中写成 \\\\ ...

  7. WPF DataGrid 行头小三角

    <DataTemplate x:Key="RowHeaderTemplate"> <StackPanel Orientation="Horizontal ...

  8. Struts2输入校验

    1.编写校验规则文件 (<ActionName>-validation.xml),文件放在Action类文件相同的路径下校验失败返回input的result.       <vali ...

  9. AS3.0定义变量的访问范围

    在AS3.0中变量的默认访问范围是:internal:包内成员可以访问,包外不可访问.AS2.0默认访问范围是public

  10. Linux下安装gcc 、g++ 、gfortran编译器

    一.ubuntu下gcc/g++/gfortran的安装 1.安装 (1).gcc ubuntu下自带gcc编译器.可以通过“gcc -v”命令来查看是否安装. (2).g++ 安装g++编译器,可以 ...