Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im n, ai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6
 
题意:求出互相匹配的括号的总数
思路:一道区间DP,dp[i][j]存的是i~j区间内匹配的个数
 
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int check(char a,char b)
{
if(a=='(' && b==')')
return 1;
if(a=='[' && b==']')
return 1;
return 0;
} int main()
{
char str[105];
int dp[105][105],i,j,k,len;
while(~scanf("%s",str))
{
if(!strcmp(str,"end"))
break;
len = strlen(str);
for(i = 0; i<len; i++)
{
dp[i][i] = 0;
if(check(str[i],str[i+1]))
dp[i][i+1] = 2;
else
dp[i][i+1] = 0;
}
for(k = 3; k<=len; k++)
{
for(i = 0; i+k-1<len; i++)
{
dp[i][i+k-1] = 0;
if(check(str[i],str[i+k-1]))
dp[i][i+k-1] = dp[i+1][i+k-2]+2;
for(j = i; j<i+k-1; j++)
dp[i][i+k-1] = max(dp[i][i+k-1],dp[i][j]+dp[j+1][i+k-1]);
}
}
printf("%d\n",dp[0][len-1]);
} return 0;
}

POJ2955:Brackets(区间DP)的更多相关文章

  1. POJ2955 Brackets —— 区间DP

    题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Su ...

  2. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

  3. Codeforces 508E Arthur and Brackets 区间dp

    Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...

  4. POJ 2995 Brackets 区间DP

    POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...

  5. CF149D. Coloring Brackets[区间DP !]

    题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...

  6. Brackets(区间dp)

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3624   Accepted: 1879 Descript ...

  7. poj 2955"Brackets"(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 给你一个只由 '(' , ')' , '[' , ']' 组成的字符串s[ ], ...

  8. HOJ 1936&POJ 2955 Brackets(区间DP)

    Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...

  9. Code Forces 149DColoring Brackets(区间DP)

     Coloring Brackets time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

随机推荐

  1. 最近国外很拉风的,,基于.net 的一个手表

    site:http://agentwatches.com/ 这个项目是一个国外工作室,筹集资金 创立的. 直接用c# 代码编译显示在手机上.能和智能手机通信等. 并且是开源的. 很酷 其次.它提供了. ...

  2. 关于function与closure

    function 方式 scope function closure expression anonymous function class(this, prototype)

  3. 产生文件命令touch,echo,cat<<EOF>test,less,more,tail,head

    . 输出命令 echo,cat,管道(|),tee,重定向(>, >>)等 . 创建一个文件:用 touch.echo.cat.tee, 重定向(>, >>)等 [ ...

  4. 设计模式(六):Singleton 单件模式 -- 创建型模式

    1.定义 当需要控制一个类的实例数量且调用者可以从一个公共的访问点访问时. 2.适用场景 1. 当类只能有一个实例而且客户可以从一个众所周知的访问点访问它时. 2. 当这个唯一实例应该是通过子类化可扩 ...

  5. 9. memcpy() memccpy() memmove() strcpy() memset()

    部分参考: http://www.cppblog.com/kang/archive/2009/04/05/78984.html 表头文件: #include <string.h>定义函数: ...

  6. 使用Windows驱动的虚拟打印机,打印Excel表格无表格线问题解决(2)

    测试: 经前天的测试,最终还是没有明显的定夺到底是驱动的问题,还是打印机的问题.但是按照可能性来排查,最明显的一点就是其他测试环境不变的情况下增加一张图片,就可以打印出表格线,我始终觉得这里是突破点, ...

  7. Diamond Armor - The most expensive Suit: 2.8 Mio Swiss Francs

    Diamond Armor - The most expensive Suit: 2.8 Mio Swiss Francs Diamond Armor

  8. 详述iOS国际化

    在真正将国际化实践前,只知道通过NSLocalizedString方法将相应语言的字符串加载进来即可.但最近公司项目的新需求增加英文版本,并支持应用内无死角切换~,这才跳过各种坑实现了应用内切换语言, ...

  9. 生成唯一的id(转)

    很多朋友都利用md5()来生成唯一的编号,但是md5()有几个缺点:1.无序,导致数据库中排序性能下降.2.太长,需要更多的存储空间.其实PHP中自带一个函数来生成唯一的id,这个函数就是uniqid ...

  10. .Net程序猿玩转Android开发---(3)登陆页面布局

    这一节我们来看看登陆页面如何布局.对于刚接触到Android开发的童鞋来说.Android的布局感觉比較棘手.须要结合各种属性进行设置,接下来我们由点入面来 了解安卓中页面如何布局,登陆页面非常eas ...