Building a Space Station(kruskal,说好的数论呢)
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 3820 | Accepted: 1950 |
Description
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.
All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.
You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.
You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.
Input
n
x1 y1 z1 r1
x2 y2 z2 r2
...
xn yn zn rn
The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.
The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.
Each of x, y, z and r is positive and is less than 100.0.
The end of the input is indicated by a line containing a zero.
Output
Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.
Sample Input
3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0
Sample Output
20.000
0.000
73.834 题意:给n个球的球心坐标(三维)以及其半径,要搭建通道使它们两两相通,若它们本来就有交叉,那么搭建费用为0,问最少的搭建费用即权值;
将球看做点,直接kruskal吧,但是要特殊判断两球相交的情况,那时两球的权值为0;
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std; const double eps = 1e-;
const int maxn = ;
int set[maxn];
struct point
{
double x,y,z;
double r;
}p[maxn]; struct node
{
int u,v;
double w;
}edge[maxn*maxn]; int cnt,n;
double cal(int i, int j)
{
return (sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y)+(p[i].z-p[j].z)*(p[i].z-p[j].z))-p[i].r-p[j].r);
}
int cmp(double x)
{
if(fabs(x) < eps)
return ;
if(x > )
return ;
return -;
}
int cmper(const struct node a, const struct node b)
{
return a.w<b.w;
} void add_edge(int u,int v,double w)
{
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].w = w;
cnt++;
edge[cnt].u = v;
edge[cnt].v = u;
edge[cnt].w = w;
cnt++;
} void init()
{
for(int i = ; i < n; i++)
set[i] = i;
}
int find(int x)
{
if(set[x] != x)
set[x] = find(set[x]);
return set[x];
}
void kruscal()
{
double ans = ;
int i;
init();
for(i = ; i < cnt; i++)
{
int uu = find(edge[i].u);
int vv = find(edge[i].v);
if(uu != vv)
{
set[uu] = vv;
ans += edge[i].w;
}
}
printf("%.3lf\n",ans);
} int main()
{
while(~scanf("%d",&n) && n)
{
for(int i = ; i < n; i++)
scanf("%lf %lf %lf %lf",&p[i].x,&p[i].y,&p[i].z,&p[i].r); cnt = ;
for(int i = ; i < n; i++)
{
for(int j = i+; j < n; j++)
{
double dis = cal(i,j);
if(cmp(dis) <= )
add_edge(i,j,);
else add_edge(i,j,dis); }
}
sort(edge,edge+cnt,cmper);
kruscal();
}
return ;
}
Building a Space Station(kruskal,说好的数论呢)的更多相关文章
- POJ2032 Building a Space Station(Kruskal)(并查集)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 7469 Accepte ...
- POJ - 2031 Building a Space Station 三维球点生成树Kruskal
Building a Space Station You are a member of the space station engineering team, and are assigned a ...
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5173 Accepte ...
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...
- POJ2031 Building a Space Station 2017-04-13 11:38 48人阅读 评论(0) 收藏
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8572 Accepte ...
- POJ 2031 Building a Space Station【经典最小生成树】
链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 2031 Building a Space Station
3维空间中的最小生成树....好久没碰关于图的东西了..... Building a Space Station Time Limit: 1000MS Memory Li ...
- poj 2031 Building a Space Station【最小生成树prime】【模板题】
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5699 Accepte ...
- Building a Space Station POJ - 2031
Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...
- poj 2931 Building a Space Station <克鲁斯卡尔>
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5869 Accepted: 2 ...
随机推荐
- 为什么你需要使用instancetype而不是id
四年前Clang添加了关键字instancetype,目的在于取代-alloc和-init等方法的返回类型id,那么使用instancetype到底比id好在哪里? instancetype宣言 不管 ...
- java解析xml文件四种方式
1.介绍 1)DOM(JAXP Crimson解析器) DOM是用与平台和语言无关的方式表示XML文档的官方W3C标准.DOM是以层次结构组织的节点或信息片断的集合.这个层次结构允许开发人员在树中寻找 ...
- ip、数字的互转
# ip ==> 数字 >>> ip2num = lambda x:sum([256**j*int(i) for j,i in enumerate(x.split('.')[: ...
- Practice 15.07.07 计算几何 - 1
[题目在这里] A.POJ 2318 叉积判断点在直线的那一侧 cross(X2-X1,P-X1) (x1,x2是直线上两点,p是要判断的点) >0 表示在左侧 <0 表示在右侧 (右手 ...
- 关于EF查询表里的部分字段
这个在项目中用到了,在网上找了一下才找到,留下来以后自已使用. List<UniversalInfo> list =new List<UniversalInfo>(); lis ...
- jetty服务器访问系统的域名
jetty-env.xml=><Set name="contextPath">/epps-compensation-backend</Set> 这个决 ...
- 国内流行的两大开源.net微信公众平台SDK对比分析
最近忙于微信周边的开发 难免手痒去搜索一下有没有相关的sdk直接拿来使 还真发现了不少 这里总结两个看起来比较不错的.net平台下基于C#语言开发的SDK 一个强大一个小巧 (1) Senparc.W ...
- django连接已有的数据库
以连接postgresql为例: 1.安装psycopg2,下载地址:http://www.stickpeople.com/projects/python/win-psycopg/ 2.配置setti ...
- Swift中共有74个内建函数
Swift中共有74个内建函数,但是在Swift官方文档(“The Swift Programming Language”)中只记录了7中.剩下的67个都没有记录. 本文将列举Swift所有的内建 ...
- tableView嵌套collectionView
首先是自定义collectionView填充的tableViewCell import UIKit // 定义一个collectionView,重写初始化大小和布局方法 class TrendsDet ...