Building a Space Station(kruskal,说好的数论呢)
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 3820 | Accepted: 1950 |
Description
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.
All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.
You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.
You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.
Input
n
x1 y1 z1 r1
x2 y2 z2 r2
...
xn yn zn rn
The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.
The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.
Each of x, y, z and r is positive and is less than 100.0.
The end of the input is indicated by a line containing a zero.
Output
Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.
Sample Input
3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0
Sample Output
20.000
0.000
73.834 题意:给n个球的球心坐标(三维)以及其半径,要搭建通道使它们两两相通,若它们本来就有交叉,那么搭建费用为0,问最少的搭建费用即权值;
将球看做点,直接kruskal吧,但是要特殊判断两球相交的情况,那时两球的权值为0;
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std; const double eps = 1e-;
const int maxn = ;
int set[maxn];
struct point
{
double x,y,z;
double r;
}p[maxn]; struct node
{
int u,v;
double w;
}edge[maxn*maxn]; int cnt,n;
double cal(int i, int j)
{
return (sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y)+(p[i].z-p[j].z)*(p[i].z-p[j].z))-p[i].r-p[j].r);
}
int cmp(double x)
{
if(fabs(x) < eps)
return ;
if(x > )
return ;
return -;
}
int cmper(const struct node a, const struct node b)
{
return a.w<b.w;
} void add_edge(int u,int v,double w)
{
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].w = w;
cnt++;
edge[cnt].u = v;
edge[cnt].v = u;
edge[cnt].w = w;
cnt++;
} void init()
{
for(int i = ; i < n; i++)
set[i] = i;
}
int find(int x)
{
if(set[x] != x)
set[x] = find(set[x]);
return set[x];
}
void kruscal()
{
double ans = ;
int i;
init();
for(i = ; i < cnt; i++)
{
int uu = find(edge[i].u);
int vv = find(edge[i].v);
if(uu != vv)
{
set[uu] = vv;
ans += edge[i].w;
}
}
printf("%.3lf\n",ans);
} int main()
{
while(~scanf("%d",&n) && n)
{
for(int i = ; i < n; i++)
scanf("%lf %lf %lf %lf",&p[i].x,&p[i].y,&p[i].z,&p[i].r); cnt = ;
for(int i = ; i < n; i++)
{
for(int j = i+; j < n; j++)
{
double dis = cal(i,j);
if(cmp(dis) <= )
add_edge(i,j,);
else add_edge(i,j,dis); }
}
sort(edge,edge+cnt,cmper);
kruscal();
}
return ;
}
Building a Space Station(kruskal,说好的数论呢)的更多相关文章
- POJ2032 Building a Space Station(Kruskal)(并查集)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 7469 Accepte ...
- POJ - 2031 Building a Space Station 三维球点生成树Kruskal
Building a Space Station You are a member of the space station engineering team, and are assigned a ...
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5173 Accepte ...
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...
- POJ2031 Building a Space Station 2017-04-13 11:38 48人阅读 评论(0) 收藏
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8572 Accepte ...
- POJ 2031 Building a Space Station【经典最小生成树】
链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 2031 Building a Space Station
3维空间中的最小生成树....好久没碰关于图的东西了..... Building a Space Station Time Limit: 1000MS Memory Li ...
- poj 2031 Building a Space Station【最小生成树prime】【模板题】
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5699 Accepte ...
- Building a Space Station POJ - 2031
Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...
- poj 2931 Building a Space Station <克鲁斯卡尔>
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5869 Accepted: 2 ...
随机推荐
- 我开启httpd服务的时候 显示Could not reliably determine the server`s fully qualified domain name,
vi /etc/httpd/conf/httpd.conf加入一句 ServerName localhost:80
- 拿走不谢!22 个 Android Studio 优秀插件汇总
Google 在2013年5月的I/O开发者大会推出了基于IntelliJ IDEA java ide上的Android Studio.AndroidStudio是一个功能齐全的开发工具,还提供了第三 ...
- Java中Date各种相关用法
Java中Date各种相关用法(一) 1.计算某一月份的最大天数 Java代码 Calendar time=Calendar.getInstance(); time.clear(); time.set ...
- asp.net 的脚本
asp.net的 Web 控件有时会包装一些用户端脚本 (client-side scripting),在控件被绘制时输出到用户端,这些脚本多数被包装在 DLL 的资源档中,并由 ScriptReso ...
- Java_Activiti5_菜鸟也来学Activiti5工作流_之与Spring集成(三)
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- 给Sublime Text2安装轻量级代码提示插件:SublimeCodeIntel
步骤: 1.下载SublimeCodeIntel(地址https://github.com/SublimeCodeIntel/SublimeCodeIntel): 2.将下载的压缩包解压,并放置在Pa ...
- Asp.Net MVC安全更新MS14-059导致项目编译失败
微软最近一次安全更新MS14-059(链接:https://technet.microsoft.com/en-us/library/security/ms14-059)由于直接应用到了machine. ...
- 系统重装c盘后,mysql重新设置
之前我的mysql装在d盘,重装了系统后,虽然只格式化了c盘,但mysql还是不能用了.我网上找了找.修改了一下配置. 1.首先设置环境变量,编辑path,在后面添加上mysql的安装路径 : 2.之 ...
- JavaScript HTML DOM
JavaScript HTML DOM 通过 HTML DOM,可访问 JavaScript HTML 文档的所有元素. HTML DOM (文档对象模型) 当网页被加载时,浏览器会创建页面的文档对象 ...
- MVC5+EF6 入门完整教程一
第0课 从0开始 ASP.NET MVC开发模式和传统的WebForm开发模式相比,增加了很多"约定". 直接讲这些 "约定" 会让人困惑,而且东西太多容易忘记 ...