【UVA1579】俄罗斯套娃 Matryoshka (动态规划)
题目:
分析:
其实就是两个dp结合起来。第一个dp求区间[l,r]全部合并起来要用的最小次数,可以用区间[l,k]&[k+1,r]转移(l<=k<r)。第二个dp求前i个娃娃分成多个套娃组最小合并次数。这两个动态规划都是很常规的。
我们考虑一个问题:怎样的区间才能弄成一个套娃组(即为1~p的互不相同的数)呢?其实只要保证这个区间的数互不相同且max值为len即可。
对于要合并的两个区间[l,k]&[k+1,r],最后一步把他们合并的费用是多少呢?假设m1=min[l,k],m2=min[k+1,r],则不用打开的套娃数为这个区间中小于max(m1,m2)的数的个数。(这个也很好理解)
然而我想不到很好的处理的方法,本题数据规模是n<=500,总感觉会超时,然而却AC了~~
代码如下:(有点恶心~~~)
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 510
#define INF 0xfffffff int n;
int a[Maxn],mx[Maxn][Maxn],mn[Maxn][Maxn];
bool p[Maxn][Maxn];
int dp[Maxn][Maxn],f[Maxn],nt[Maxn],first[Maxn]; int mymax(int x,int y) {return x>y?x:y;}
int mymin(int x,int y) {return x<y?x:y;} struct node
{
int id,x;
};//t[Maxn]; bool cmp(node x,node y) {return x.x<y.x;} void init()
{
memset(first,,sizeof(first));
memset(p,,sizeof(p));
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
nt[i]=first[a[i]];first[a[i]]=i;
}
memset(mn,,sizeof(mn));
for(int i=;i<=n;i++) mx[i][i]=mn[i][i]=a[i],p[i][i]=;
for(int i=n;i>=;i--)
for(int j=i+;j<=n;j++)
{
mx[i][j]=mymax(mx[i][j-],a[j]);
mn[i][j]=mymin(mn[i][j-],a[j]);
if(p[i][j-]&&nt[j]<i) p[i][j]=;
}
} int ddp(int x,int y)
{
if(dp[x][y]<) return dp[x][y];
if(x==y) {dp[x][y]=;return ;}
int num;
node t[Maxn];
for(int i=x;i<=y;i++) t[i-x+].x=a[i],t[i-x+].id=i;
sort(t+,t++y-x+,cmp);
for(int i=x;i<y;i++)
{
int mm=mymax(mn[x][i],mn[i+][y]);
num=;
for(int j=;j<=y-x+;j++)
{
if(t[j].x==mm) break;
if(t[j].x<mm) num++;
}
num=y-x+-num;
dp[x][y]=mymin(dp[x][y],ddp(x,i)+ddp(i+,y)+num);
}
return dp[x][y];
} void ffind()
{
memset(dp,,sizeof(dp));
memset(f,,sizeof(f));
for(int i=;i<=n;i++)
for(int j=i;j<=n;j++)
{
if(mx[i][j]==j-i+&&p[i][j])
ddp(i,j);
}
f[]=;
for(int i=;i<=n;i++)
for(int j=;j<i;j++) if(mx[j+][i]==i-j&&p[j+][i])
{
f[i]=mymin(f[i],f[j]+dp[j+][i]);
}
if(f[n]>) printf("impossible\n");
else printf("%d\n",f[n]);
} int main()
{
while(scanf("%d",&n)!=EOF)
{
init();
ffind();
}
return ;
}
uva1579
2016-03-08 13:32:04
【UVA1579】俄罗斯套娃 Matryoshka (动态规划)的更多相关文章
- UVA-1579 Matryoshka (区间DP)
题目大意:n个俄罗斯套娃,都有相应的编号,每次可将两个相邻的套娃组合成一组,每次合成只能小的放到大的里面,并且是逐层嵌套.问将这n个套娃分成若干个组,并且每组都是编号从1开始的连续序列,最少需要几步. ...
- 清晰明了的javascript版动态规划
算法是一种艺术,给人感觉很不好接近,但是一旦你和ta熟络了,你就能发现这门艺术的内在是多么美妙且多变. 对于前端来说,算法也许不是最重要的,在日常工作中,几乎很少用到.所以很多人也不是很感冒. 不过呢 ...
- leetcode 354. 俄罗斯套娃信封问题(二维排序有关)
题目描述 给定一些标记了宽度和高度的信封,宽度和高度以整数对形式 (w, h) 出现.当另一个信封的宽度和高度都比这个信封大的时候,这个信封就可以放进另一个信封里,如同俄罗斯套娃一样. 请计算最多能有 ...
- C#LeetCode刷题-动态规划
动态规划篇 # 题名 刷题 通过率 难度 5 最长回文子串 22.4% 中等 10 正则表达式匹配 18.8% 困难 32 最长有效括号 23.3% 困难 44 通配符匹配 17.7% ...
- LeetCode刷题总结-动态规划篇
本文总结LeetCode上有动态规划的算法题,推荐刷题总数为54道.具体考点分析如下图: 1.中心扩展法 题号:132. 分割回文串 II,难度困难 2.背包问题 题号:140. 单词拆分 II,难度 ...
- 【NOIP2015模拟11.5】JZOJ8月5日提高组T1 俄罗斯套娃
[NOIP2015模拟11.5]JZOJ8月5日提高组T1 俄罗斯套娃 题目 题解 题意就是说 将1~\(n\)排列,问有多少种方案使得序列的逆序对个数小于\(k\) 很容易想到DP 设\(f[i][ ...
- leetcode动态规划题目总结
Hello everyone, I am a Chinese noob programmer. I have practiced questions on leetcode.com for 2 yea ...
- LeetCode:动态规划
动态规划 动态规划永远的神 这部分主要是学习了 labuladong 公众号中对于动态规划的讲解 刷了些 leetcode 题,在此做一些记录,不然没几天就忘光光了 题目 这部分内容直接上题目了,解题 ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
随机推荐
- careercup-数组和字符串1.8
1.8 假定有一个方法isSubstring,可检查一个单词是否为其他字符串的子串.给定两个字符串s1和s2,请编写代码检查s2是否为s1旋转而成,要求只能调用一次isSubstring.旋转字符串: ...
- 构建tcpdump/wireshark pcap文件
pcap文件格式是bpf保存原始数据包的格式,很多软件都在使用,比如tcpdump.wireshark等等,了解pcap格式可以加深对原始数据包的了解,自己也可以手工构造任意的数据包进行测试. p ...
- Android BLE开发——Android手机与BLE终端通信初识
蓝牙BLE官方Demo下载地址: http://download.csdn.net/detail/lqw770737185/8116019参考博客地址: http://www.eoeandr ...
- WTL的消息机制
Windows消息 众所周知,Windows消息有两种:队列话消息和非队列话消息.队列话消息是被Windows操作系统放入消息队列的,程序通过主消息循环不断的从消息队列中取出消息并分发到各自的窗体调用 ...
- iOS UIKit:CollectionView之布局(2)
Collection view使用UICollectionViewFlowLayout对象来管理section中的cell,该对象是一种流布局方式,即在collection view中的section ...
- AppCan中两种获取信息的方法
<div id="newsInfo">正在加载...</div> 1.JSON格式: [{'R': '1','NOTI_ID': '9','NOTI_TIT ...
- update inner join
string sql = @"update a set a.M_ParentID=b.M_ParentID, a.M_Name=b.M_Name, a.M_Seq=b.M_Seq from ...
- ASP.NET MVC 第七回 UrlHelper
这节讲 一下ASP.NET MVC中的Helper. 何谓Helper,其实就是在View中为了实现一些灵活功能而写的方法组. 其实ASP.NET MVC的View是Aspx的页面,本身可以声明定义方 ...
- 雷鸟(Thunderbird)收取Gmail出错,收到警告邮件
如题,每次打开thunderbird都会收到以下提醒邮件,后来发现,只要将thunderbird中和google服务有关的插件卸载掉就可以了 We prevented the sign-in atte ...
- Jquery Datatables(三)
最近在项目中又使用Datatables的一个有趣功能,官网列子如下图: 点击“+”,展开列表,再次点击收缩. 官网的列子点击展开后的数据也是原来行中的数据,这边有了一个想法是否可以利用Ajax去动态加 ...