LeetCode 146. LRU CacheLRU缓存机制 (C++/Java)
题目:
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get
and put
.
get(key)
- Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.put(key, value)
- Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
The cache is initialized with a positive capacity.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 /* capacity */ ); cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
分析:
设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get
和 写入数据 put
。
获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。
写入数据 put(key, value) - 如果密钥不存在,则写入其数据值。当缓存容量达到上限时,它应该在写入新数据之前删除最近最少使用的数据值,从而为新的数据值留出空间。
按照所给的例子看一下cache内部是如何变化的。
front | back | result | |
put(1, 1) | (1, 1) | ||
put(2, 2) | (2, 2) | (1, 1) | |
get(1) | (1, 1) | (2, 2) | 1 |
put(3, 3) | (3, 3) | (1, 1) | |
get(2) | (3, 3) | (1, 1) | -1 |
put(4, 4) | (4, 4) | (3, 3) | |
get(1) | (4, 4) | (3, 3) | -1 |
get(3) | (3, 3) | (4, 4) | 3 |
get(4) | (4, 4) | (3, 3) | 4 |
很清楚的就理解了LRU的机制,当get的key在cache中已经存在时,就将存储的内容放到最前面,get的key不存在时就返回-1。
put的新的key-value时,如果达到了容量上限,就删除一个最近最少使用的,实际上也是队尾的元素,然后将新的key-value存储到最前面。
因为我们每次要O(1)的复杂度,所以可以使用hashmap来get数据,而当容量达到上限时,要删除最近最少使用的,且要在最前面put进新的数据,要使用一个双向链表,来保证O(1)的时间复杂度。
java中可以使用LinkeHashMap来实现LRU缓存。
程序:
C++
class LRUCache {
public:
LRUCache(int capacity) {
cap = capacity;
} int get(int key) {
auto it = map.find(key);
if(it == map.end())
return -1;
l.splice(l.begin(), l, it->second);
return it->second->second;
} void put(int key, int value) {
auto it = map.find(key);
if(it != map.end()){
l.erase(it->second);
}
l.push_front(make_pair(key, value));
map[key] = l.begin();
if (map.size() > cap) {
int k = l.rbegin()->first;
l.pop_back();
map.erase(k);
}
}
private:
int cap;
list<pair<int, int>> l;
unordered_map<int, list<pair<int, int>>::iterator> map;
};
Java
class LRUCache { public LRUCache(int capacity) {
this.cap = capacity;
this.map = new HashMap<>();
this.dummyHead = new Node(0, 0);
this.tail = new Node(0, 0); dummyHead.prev = null;
dummyHead.next = tail;
tail.prev = dummyHead;
tail.next = null;
} public int get(int key) {
if(!map.containsKey(key))
return -1;
Node node = map.get(key);
removeNode(node);
addToHead(node);
return node.val;
} public void put(int key, int value) {
if(map.containsKey(key)){
Node node = map.get(key);
removeNode(node);
map.remove(key);
size--;
}
Node node = new Node(key, value);
map.put(key, node);
if(size < cap){
addToHead(node);
size++;
}else {
map.remove(tail.prev.key);
removeNode(tail.prev);
addToHead(node);
}
} private void removeNode(Node node){
node.prev.next = node.next;
node.next.prev = node.prev;
} private void addToHead(Node node){
node.next = dummyHead.next;
node.next.prev = node;
dummyHead.next = node;
node.prev = dummyHead;
} class Node{
int key;
int val;
Node prev;
Node next;
public Node(int key, int val){
this.key = key;
this.val = val;
}
}
private int cap;
private Map<Integer, Node> map;
private Node dummyHead;
private Node tail;
private int size;
}
class LRUCache { public LRUCache(int capacity) {
this.capacity = capacity;
map = new LinkedHashMap<>();
} public int get(int key) {
if(map.containsKey(key)) {
int value = map.get(key);
map.remove(key);
map.put(key, value);
return value;
}
return -1;
} public void put(int key, int value) {
if(map.containsKey(key)) {
map.remove(key);
}
map.put(key, value);
if(map.size() > capacity) {
map.remove(map.keySet().iterator().next());
}
}
private int capacity;
private LinkedHashMap<Integer, Integer> map;
}
LeetCode 146. LRU CacheLRU缓存机制 (C++/Java)的更多相关文章
- [leetcode]146. LRU CacheLRU缓存
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...
- 重学数据结构(三)——使用单链表实现LRU淘汰缓存机制
使用单链表实现LRU(Least Recently Used)淘汰缓存机制 需求:存在一个单链表,在单链表尾部的都是越早之前添加的元素. 当元素被访问到时,会添加进缓存(也就是这个单链表中). 如果这 ...
- Java实现 LeetCode 146 LRU缓存机制
146. LRU缓存机制 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - ...
- [Leetcode]146.LRU缓存机制
Leetcode难题,题目为: 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key ...
- LeetCode 146. LRU缓存机制(LRU Cache)
题目描述 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 (k ...
- Leetcode 146. LRU 缓存机制
前言 缓存是一种提高数据读取性能的技术,在计算机中cpu和主内存之间读取数据存在差异,CPU和主内存之间有CPU缓存,而且在内存和硬盘有内存缓存.当主存容量远大于CPU缓存,或磁盘容量远大于主存时,哪 ...
- 如何利用缓存机制实现JAVA类反射性能提升30倍
一次性能提高30倍的JAVA类反射性能优化实践 文章来源:宜信技术学院 & 宜信支付结算团队技术分享第4期-支付结算部支付研发团队高级工程师陶红<JAVA类反射技术&优化> ...
- leetcode 146. LRU Cache 、460. LFU Cache
LRU算法是首先淘汰最长时间未被使用的页面,而LFU是先淘汰一定时间内被访问次数最少的页面,如果存在使用频度相同的多个项目,则移除最近最少使用(Least Recently Used)的项目. LFU ...
- [LeetCode] 146. LRU Cache 最近最少使用页面置换缓存器
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...
- [LeetCode] 146. LRU Cache 近期最少使用缓存
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...
随机推荐
- 【Oracle】在PL/SQL中使用sql实现选择排序
[Oracle]在PL/SQL中使用sql实现选择排序 一般来说,SQL要排序的话直接使用order by即可 不一般来说,就是瞎搞,正好也可以巩固自己的数据结构基础 使用SQL实现排序系列: 使用S ...
- 【Oracle】使用PL/SQL快速查询出1-9数字
[Oracle]使用PL/SQL快速查询出1-9数字 简单来说,直接Recursive WITH Clauses 在Oracle 里面就直接使用WITH result(参数)即可 WITH resul ...
- 力扣138(java)- 复制带随机指针的链表(中等)
题目: 给你一个长度为 n 的链表,每个节点包含一个额外增加的随机指针 random ,该指针可以指向链表中的任何节点或空节点. 构造这个链表的 深拷贝. 深拷贝应该正好由 n 个 全新 节点组成,其 ...
- 力扣430(java)-扁平化多级双向链表(中等)
题目: 你会得到一个双链表,其中包含的节点有一个下一个指针.一个前一个指针和一个额外的 子指针 .这个子指针可能指向一个单独的双向链表,也包含这些特殊的节点.这些子列表可以有一个或多个自己的子列表,以 ...
- 一个 Blink 小白的成长之路
写在前面 写过blink sql的同学应该都有体会,明明写的时候就很顺滑,小手一抖,洋洋洒洒三百行代码,一气呵成.结果跑的时候,吞吐量就是上不去.导致数据延迟高,消息严重积压,被业务方疯狂吐槽.这时候 ...
- 模拟IDC spark读写MaxCompute实践
简介: 现有湖仓一体架构是以 MaxCompute 为中心读写 Hadoop 集群数据,有些线下 IDC 场景,客户不愿意对公网暴露集群内部信息,需要从 Hadoop 集群发起访问云上的数据.本文以 ...
- 如何 0 改造,让单体/微服务应用成为 Serverless Application
简介: 随着 2013 年以 Docker 为代表的容器技术.CNCF 基金会以及 K8s 的发展等,云原生开始被广大开发者所熟知.云原生时代之前还有两个阶段:一是自建 IDC 机房,二是简单地把原有 ...
- 走近Quick Audience,了解消费者运营产品的发展和演变
简介: Quick Audience产品是一款云原生面向消费者的营销产品,自诞生以来,经历了三个发展阶段.每个阶段的转变,都与互联网环境和消费者行为的变迁有着极大的关联. Quick Audien ...
- 链路分析 K.O “五大经典问题”
简介:链路分析是基于已存储的全量链路明细数据,自由组合筛选条件与聚合维度进行实时分析,可以满足不同场景的自定义诊断需求. 作者:涯海 链路追踪的 "第三种玩法" 提起链路追踪,大 ...
- 尝试 IIncrementalGenerator 进行增量 Source Generator 生成代码
在加上热重载时,源代码生成 Source Generator 的默认行为会让 Visual Studio 有些为难,其原因是热重载会变更代码,变更代码触发代码生成器更新代码,代码生成器更新的代码说不定 ...