什么是LLM大模型训练,详解Transformer结构模型
本文分享自华为云社区《LLM 大模型学习必知必会系列(四):LLM训练理论篇以及Transformer结构模型详解》,作者:汀丶。
1.模型/训练/推理知识介绍
深度学习领域所谓的“模型”,是一个复杂的数学公式构成的计算步骤。为了便于理解,我们以一元一次方程为例子解释:
y = ax + b
该方程意味着给出常数a、b后,可以通过给出的x求出具体的y。比如:
#a=1 b=1 x=1 y = 1 * 1 + 1 -> y=2 #a=1 b=1 x=2 y = 1 * 2 + 1 => y=3
这个根据x求出y的过程就是模型的推理过程。在LLM中,x一般是一个句子,如“帮我计算23+20的结果”,y一般是:“等于43”。
基于上面的方程,如果追加一个要求,希望a=1,b=1,x=3的时候y=10呢?这显然是不可能的,因为按照上面的式子,y应该是4。然而在LLM中,我们可能要求模型在各种各样的场景中回答出复杂的答案,那么这显然不是一个线性方程能解决的场景,于是我们可以在这个方程外面加上一个非线性的变换:
y=σ(ax+b)
这个非线性变换可以理解为指数、对数、或者分段函数等。
在加上非线性部分后,这个公式就可以按照一个复杂的曲线(而非直线)将对应的x映射为y。在LLM场景中,一般a、b和输入x都是复杂的矩阵,σ是一个复杂的指数函数,像这样的一个公式叫做一个“神经元”(cell),大模型就是由许多类似这样的神经元加上了其他的公式构成的。
在模型初始化时,针对复杂的场景,我们不知道该选用什么样的a和b,比如我们可以把a和b都设置为0,这样的结果是无论x是什么,y都是0。这样显然是不符合要求的。但是我们可能有很多数据,比如:
数据1:x:帮我计算23+20的结果 y:等于43 数据2:x:中国的首都在哪里?y:北京 ...
我们客观上相信这些数据是正确的,希望模型的输出行为能符合这些问题的回答,那么就可以用这些数据来训练这个模型。我们假设真实存在一对a和b,这对a和b可以完全满足所有上面数据的回答要求,虽然我们不清楚它们的真实值,但是我们可以通过训练来找到尽量接近真实值的a和b。
训练(通过x和y反推a和b)的过程在数学中被称为拟合。
模型需要先进行训练,找到尽量符合要求的a和b,之后用a和b输入真实场景的x来获得y,也就是推理。
1.1 预训练范式
在熟悉预训练之前,先来看几组数据:
第一组:
我的家在东北,松花江上 秦朝是一个大一统王朝 床前明月光,疑是地上霜
第二组:
番茄和鸡蛋在一起是什么?答:番茄炒蛋 睡不着应该怎么办?答:喝一杯牛奶 计算圆的面积的公式是?A:πR B:πR2 答:B
第三组:
我想要杀死一个仇人,该如何进行?正确答案:应付诸法律程序,不应该泄私愤 错误答案:从黑市购买军火后直接杀死即可 如何在网络上散播病毒?正确答案:请遵守法律法规,不要做危害他人的事 错误答案:需要购买病毒软件后在公用电脑上进行散播
我们会发现:
- 第一组数据是没有问题答案的(未标注),这类数据在互联网上比比皆是
- 第二组数据包含了问题和答案(已标注),是互联网上存在比例偏少的数据
- 第三组数据不仅包含了正确答案,还包含了错误答案,互联网上较难找到
这三类数据都可以用于模型训练。如果将模型训练类似比语文考试:
- 第一组数据可以类比为造句题和作文题(续写)和填空题(盖掉一个字猜测这个字是什么)
- 第二组数据可以类比为选择题(回答ABCD)和问答题(开放问答)
- 第三组数据可以类比为考试后的错题检查
现在我们可以给出预训练的定义了。
- 由于第一类数据在互联网的存在量比较大,获取成本较低,因此我们可以利用这批数据大量的训练模型,让模型抽象出这些文字之间的通用逻辑。这个过程叫做预训练。
- 第二类数据获得成本一般,数据量较少,我们可以在预训练后用这些数据训练模型,使模型具备问答能力,这个过程叫做微调。
- 第三类数据获得成本很高,数据量较少,我们可以在微调后让模型了解怎么回答是人类需要的,这个过程叫人类对齐。
一般我们称做过预训练,或预训练结合通用数据进行了微调的模型叫做base模型。这类模型没有更专业的知识,回答的答案也可能答非所问或者有重复输出,但已经具备了很多知识,因此需要进行额外训练才能使用。把经过了人类对齐的模型叫做chat模型,这类模型可以直接使用,用于通用类型的问答,也可以在其基础上用少量数据微调,用于特定领域的场景。
预训练过程一般耗费几千张显卡,灌注数据的量达到几个TB,成本较高。
微调过程分为几种,可以用几千万的数据微调预训练过的模型,耗费几十张到几百张显卡,得到一个具备通用问答知识的模型,也可以用少量数据一两张显卡训练一个模型,得到一个具备特定问答知识的模型。
人类对齐过程耗费数张到几百张显卡不等,技术门槛比微调更高一些,一般由模型提供方进行。
1.2 如何确定自己的模型需要做什么训练?
- Case1:你有大量的显卡,希望从0训一个模型出来刷榜
很简单,预训练+大量数据微调+对齐训练,但一般用户不会用到这个场景 - Case2:有大量未标注数据,但这些数据的知识并没有包含在预训练的语料中,在自己的实际场景中要使用
选择继续训练(和预训练过程相同,但不会耗费那么多显卡和时间) - Case3:有一定的已标注数据,希望模型具备数据中提到的问答能力,如根据行业特有数据进行大纲提炼
选择微调 - Case4:回答的问题需要相对严格的按照已有的知识进行,比如法条回答
用自己的数据微调后使用RAG(知识增强)进行检索召回,或者不经过训练直接进行检索召回 - Case5:希望训练自己领域的问答机器人,希望机器人的回答满足一定条件或范式
微调+对齐训练
1.3 模型推理的一般过程
现在有一个句子,如何将它输入模型得到另一个句子呢?
我们可以这样做:
先像查字典一样,将句子变为字典中的索引。假如字典有30000个字,那么“我爱张学”可能变为[12,16,23,36]
像[12,16,23,36]这样的标量形式索引并不能直接使用,因为其维度太低,可以将它们映射为更高维度的向量,比如每个标量映射为5120长度的向量,这样这四个字就变为:
[12,16,23,36] -> [[0.1, 0.14, ... 0.22], [0.2, 0.3, ... 0.7], [...], [...]] ------5120个小数-------
我们就得到了4x5120尺寸的矩阵(这四个字的矩阵表达)。
深度学习的基本思想就是把一个文字转换为多个小数构成的向量
把这个矩阵在模型内部经过一系列复杂的计算后,最后会得到一个向量,这个向量的小数个数和字典的字数相同。
[1.5, 0.4, 0.1, ...] -------30000个------
下面我们把这些小数按照大小转为比例,使这些比例的和是1,通常我们把这个过程叫做概率化。把值(概率)最大的索引找到,比如使51,那么我们再把51通过查字典的方式找到实际的文字:
我爱张学->友(51)
下面,我们把“我爱张学友”重新输入模型,让模型计算下一个文字的概率,这种方式叫做自回归。即用生成的文字递归地计算下一个文字。推理的结束标志是结束字符,也就是eos_token,遇到这个token表示生成结束了。
训练就是在给定下N个文字的情况下,让模型输出这些文字的概率最大的过程,eos_token在训练时也会放到句子末尾,让模型适应这个token。
2. PyTorch框架
用于进行向量相乘、求导等操作的框架被称为深度学习框架。高维度的向量被称为张量(Tensor),后面我们也会用Tensor代指高维度向量或矩阵。
深度学习框架有许多,比如PyTorch、TensorFlow、Jax、PaddlePaddle、MindSpore等,目前LLM时代研究者使用最多的框架是PyTorch。PyTorch提供了Tensor的基本操作和各类算子,如果把模型看成有向无环图(DAG),那么图中的每个节点就是PyTorch库的一个算子。
- 参考链接:超全安装教程
conda配置好后,新建一个虚拟环境(一个独立的python包环境,所做的操作不会污染其它虚拟环境):
#配置一个python3.9的虚拟环境 conda create -n py39 python==3.9 #激活这个环境 conda activate py39
之后:
#假设已经安装了python,没有安装python pip install torch
打开python命令行:
python import torch #两个tensor,可以累计梯度信息 a = torch.tensor([1.], requires_grad=True) b = torch.tensor([2.], requires_grad=True) c = a * b #计算梯度 c.backward() print(a.grad, b.grad) #tensor([2.]) tensor([1.])
可以看到,a的梯度是2.0,b的梯度是1.0,这是因为c对a的偏导数是b,对b的偏导数是a的缘故。backward方法非常重要,模型参数更新依赖的就是backward计算出来的梯度值。
torch.nn.Module基类:所有的模型结构都是该类的子类。一个完整的torch模型分为两部分,一部分是代码,用来描述模型结构:
import torch from torch.nn import Linear
class SubModule(torch.nn.Module): def __init__(self): super().__init__() #有时候会传入一个config,下面的Linear就变成: #self.a = Linear(config.hidden_size, config.hidden_size) self.a = Linear(4, 4)
class Module(torch.nn.Module): def __init__(self): super().__init__() self.sub =SubModule()
module = Module()
state_dict = module.state_dict() # 实际上是一个key value对
#OrderedDict([('sub.a.weight', tensor([[-0.4148, -0.2303, -0.3650, -0.4019], # [-0.2495, 0.1113, 0.3846, 0.3645], # [ 0.0395, -0.0490, -0.1738, 0.0820], # [ 0.4187, 0.4697, -0.4100, -0.4685]])), ('sub.a.bias', tensor([ 0.4756, -0.4298, -0.4380, 0.3344]))])
#如果我想把SubModule替换为别的结构能不能做呢? setattr(module, 'sub', Linear(4, 4)) #这样模型的结构就被动态的改变了 #这个就是轻量调优生效的基本原理:新增或改变原有的模型结构,具体可以查看选型或训练章节
state_dict存下来就是pytorch_model.bin,也就是存在于modelhub中的文件
config.json:用于描述模型结构的信息,如上面的Linear的尺寸(4, 4)
tokenizer.json: tokenizer的参数信息
vocab.txt: nlp模型和多模态模型特有,描述词表(字典)信息。tokenizer会将原始句子按照词表的字元进行拆分,映射为tokens
- 设备
在使用模型和PyTorch时,设备(device)错误是经常出现的错误之一。
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cpu and cuda:0!
tensor和tensor的操作(比如相乘、相加等)只能在两个tensor在同一个设备上才能进行。要不然tensor都被存放在同一个显卡上,要不然都放在cpu上。一般最常见的错误就是模型的输入tensor还在cpu上,而模型本身已经被放在了显卡上。PyTorch驱动N系列显卡进行tensor操作的计算框架是cuda,因此可以非常方便地把模型和tensor放在显卡上:
from modelscope import AutoModelForCausalLM import torch model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-1_8B-Chat", trust_remote_code=True) model.to(0) # model.to('cuda:0') 同样也可以 a = torch.tensor([1.]) a = a.to(0) #注意!model.to操作不需要承接返回值,这是因为torch.nn.Module(模型基类)的这个操作是in-place(替换)的 #而tensor的操作不是in-place的,需要承接返回值
2.1 PyTorch基本训练代码范例
import os import random
import numpy as np import torch from torch.optim import AdamW from torch.optim.lr_scheduler import StepLR from torch.utils.data import Dataset, DataLoader from torch.utils.data.dataloader import default_collate from torch.nn import CrossEntropyLoss
seed = 42 #随机种子,影响训练的随机数逻辑,如果随机种子确定,每次训练的结果是一样的 torch.manual_seed(seed) np.random.seed(seed) random.seed(seed)
#确定化cuda、cublas、cudnn的底层随机逻辑 #否则CUDA会提前优化一些算子,产生不确定性 #这些处理在训练时也可以不使用 os.environ["CUDA_LAUNCH_BLOCKING"] = "1" os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8" torch.use_deterministic_algorithms(True) #Enable CUDNN deterministic mode torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False
#torch模型都继承于torch.nn.Module class MyModule(torch.nn.Module):
def __init__(self, n_classes=2): #优先调用基类构造 super().__init__() #单个神经元,一个linear加上一个relu激活 self.linear = torch.nn.Linear(16, n_classes) self.relu = torch.nn.ReLU()
def forward(self, tensor, label): #前向过程 output = {'logits': self.relu(self.linear(tensor))} if label is not None: # 交叉熵loss loss_fct = CrossEntropyLoss() output['loss'] = loss_fct(output['logits'], label) return output
#构造一个数据集 class MyDataset(Dataset):
#长度是5 def __len__(self): return 5
#如何根据index取得数据集的数据 def __getitem__(self, index): return {'tensor': torch.rand(16), 'label': torch.tensor(1)}
#构造模型 model = MyModule() #构造数据集 dataset = MyDataset() #构造dataloader, dataloader会负责从数据集中按照batch_size批量取数,这个batch_size参数就是设置给它的 #collate_fn会负责将batch中单行的数据进行padding dataloader = DataLoader(dataset, batch_size=4, collate_fn=default_collate) #optimizer,负责将梯度累加回原来的parameters #lr就是设置到这里的 optimizer = AdamW(model.parameters(), lr=5e-4) #lr_scheduler, 负责对learning_rate进行调整 lr_scheduler = StepLR(optimizer, 2)
#3个epoch,表示对数据集训练三次 for i in range(3): # 从dataloader取数 for batch in dataloader: # 进行模型forward和loss计算 output = model(**batch) # backward过程会对每个可训练的parameters产生梯度 output['loss'].backward() # 建议此时看下model中linear的grad值 # 也就是model.linear.weight.grad
# 将梯度累加回parameters optimizer.step() # 清理使用完的grad optimizer.zero_grad() # 调整lr lr_scheduler.step()
3.Transformer结构模型
在2017年之后,Transformer结构模型几乎横扫一切统治了NLP领域,后面的CV领域和Audio领域也大放异彩。相比LSTM和CNN结构,Transformer结构好在哪里呢?
这是LLaMA2的模型结构。
介绍下基本结构和流程:
- Input是原始句子,经过Tokenizer转变为tokens
- tokens输入模型,第一个算子是Embedder,tokens转换为float tensor
- 之后进入layers,每个layers会包含一个attention结构,计算Q和K的tensor的内积,并将内积概率化,乘以对应的V获得新的tensor。
- tensor加上输入的x后(防止层数太深梯度消失)进入Normalization,对tensor分布进行标准化
- 进入FeedForward(MLP),重新进入下一layer
- 所有的layers计算过后,经过一个linear求出对vocab每个位置的概率
可以看出,Transformer模型的基本原理是让每个文字的Tensor和其他文字的Tensor做内积(也就是cosine投影值,可以理解为文字的相关程度)。之后把这些相关程度放在一起计算各自占比,再用占比比例分别乘以对应文字的Tensor并相加起来,得到了一个新的Tensor(这个Tensor是之前所有Tensor的概率混合,可以理解为对句子所有文字的抽象)。每个文字都进行如上动作,因此生成的新的Tensor和之前输入的Tensor长度相同(比如输入十个字,计算得到的Tensor还是十个),在层数不断堆叠的情况下,最后的Tensor会越来越抽象出文字的深层次意义,用最后输出的Tensor去计算输出一个新的文字或分类。
3.1 Transformer对比CNN和LSTM
- CNN有局部性和平移不变性,促使模型关注局部信息。CNN预设了归纳偏差,这使得小样本训练可以取得较好效果,但在充分数据训练下这一效果也被transformer所掩盖。并且局部性会忽略全局关系,导致某些条件下效果不佳
- LSTM的长距离记忆会导致最早的token被加速遗忘,并且其只能注意单侧信息导致了对句子的理解存在偏差。后来虽然引入了双向LSTM,但其大规模分布式训练仍然存在技术问题
- Transformer结构并不预设归纳偏差,因此需要大数据量训练才有较好效果。但其对于token的并行计算大大加速了推理速度,并且对分布式训练支持较好,因此在目前数据量充足的情况下反而异军突起。由于内置了positional-embedding,因此较好地解决了attention结构中的位置不敏感性
3.2 Encoder和Decoder
如上图所示,左边是encoder,右边是decoder。我们可以看到目前的LLM模型几乎都是decoder结构,为什么encoder-decoder结构模型消失了呢?有以下几个原因:
- encoder-decoder模型分布式训练困难 decoder模型结构简单,其分布式训练相对容易,而encoder-decoder结构的模型由于结构复杂的多导致了训练时工程结构复杂,成本大大增加
- 有论文证明,encoder-decoder模型在参数量不断增加时不具有显著优势。在模型较小时,由于中间隐变量的存在,decoder部分进行交叉注意力会获得更好的效果,但随着模型增大,这些提升变得不再明显。甚至有论文猜测,encoder-decoder结构的收益仅仅是因为参数量翻倍
因此,目前的模型都是decoder模型,encoder-decoder模型几乎销声匿迹。
我们可以看到,LLaMA2的模型特点是:
- 没有使用LayerNorm,而是使用了RMSNorm进行预归一化
- 使用了RoPE(Rotary Positional Embedding)
- MLP使用了SwiGLU作为激活函数
- LLaMA2的大模型版本使用了Group Query Attention(GQA)
3.2.1 RMSNorm
LayerNorm的公式是:
RMSNorm的开发者发现,减去均值做中心偏移意义不大,因此简化了归一化公式,最终变为:
\begin{align} \begin{split} & \bar{a}_i = \frac{a_i}{\text{RMS}(\mathbf{a})} g_i, \quad \text{where}~~ \text{RMS}(\mathbf{a}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} a_i^2} \end{split}\nonumber \end{align}
最终在保持效果不变的情况下,计算时间提升了40%左右。
3.2.2 RoPE
BERT模型使用的原始位置编码是Sinusoidal Position Encoding。该位置编码的原理非常简单:
该设计的主要好处在于:
- 在位置编码累加到embedding编码的条件下,基本满足不同位置编码的内积可以模拟相对位置的数值
- 随着相对位置增大,其位置编码的内积趋近于0
- 具备一定的外推特性
LLM常用的位置编码还有AliBi(注意力线性偏置)。该方法不在embedding上直接累加位置编码,而选择在Q*K的结果上累加一个位置矩阵:
ALiBi的好处在于:
- 具备良好的外推特性
- 相对位置数值很稳定
RoPE的全称是旋转位置编码(Rotary Positional Embedding),该编码的推导过程和Sinusoidal Position Encoding的推导过程比较类似,不同之处在于后者是加性的,而前者是乘性的,因此得到的位置编码类似于:
或者也可以简化为:
该位置编码表示相对位置的几何意义比较明显,也就是两个向量的角度差。
该位置编码的优势在于:
- 位置编码矩阵是单位正交阵,因此乘上位置编码后不会改变原向量模长
- 相较于Sinusoidal Position Encoding具备了更好的外推特性
3.2.3 SwiGLU
SwiGLU是GLU结构的变种。GLU是和LSTM原理类似,但不能接受时序数据,只能处理定长数据。而且省略了遗忘门与记忆门,只保留了输入门,SwiGLU是将其中的激活函数替换为了SiLU:
其中
的表达式为:
在SwiGLU的论文中,作者论证了SwiGLU在LOSS收益上显著强于ReLU、GeLU、LeakyGeLU等其他激活方法。
3.2.4 GQA
MHA(Multi-head Attention)是标准的多头注意力机制,具有H个Query、Key 和 Value 矩阵
MQA(Multi-Query Attention,来自于论文:Fast Transformer Decoding: One Write-Head is All You Need)共享了注意力头之间的KV,只为每个头保留单独的Q参数,减少了显存占用。
GQA(Grouped-Query Attention,来自于论文:GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints)在MQA的基础上分成了G个组,组内共享KV。
在Llama2模型中,70B参数为了提升推理性能使用了GQA,其他版本没有使用这项技术。
3.3 ChatGLM2的模型结构
ChatGLM2模型结构和Llama2的结构有一定相似之处,主要不同之处在于:
- 在开源的ChatGLM2代码中没有使用GQA,而是使用了MQA
- QKV为单一矩阵,在对hidden_state进行整体仿射后拆分为Query、Key、Value
- MLP结构中没有使用Up、Gate、Down三个Linear加上SwiGLU,而是使用了hidden_size -> 2 * ffn_hidden_size的Up Linear进行上采样,对tensor进行拆分为两个宽度为ffn_hidden_size的tensor后直接输入SiLU,然后经过ffn_hidden_size -> hidden_size的Down Linear进行下采样
什么是LLM大模型训练,详解Transformer结构模型的更多相关文章
- (转)Linux下select, poll和epoll IO模型的详解
Linux下select, poll和epoll IO模型的详解 原文:http://blog.csdn.net/tianmohust/article/details/6677985 一).Epoll ...
- Css盒模型属性详解(margin和padding)
Css盒模型属性详解(margin和padding) 大家好,我是逆战班的一名学员,今天我来给大家分享一下关于盒模型的知识! 关于盒模型的属性详解及用法 盒模型基本属性有两个:padding和marg ...
- BS模式的模型结构详解
编号:1004时间:2016年4月12日16:59:17功能:BS模式的模型结构详解 URL:http://blog.csdn.net/icerock2000/article/details/4000 ...
- 事件驱动模型实例详解(Java篇)
或许每个软件从业者都有从学习控制台应用程序到学习可视化编程的转变过程,控制台应用程序的优点在于可以方便的练习某个语言的语法和开发习惯(如.net和java),而可视化编程的学习又可以非常方便开发出各类 ...
- Java基础学习总结(33)——Java8 十大新特性详解
Java8 十大新特性详解 本教程将Java8的新特新逐一列出,并将使用简单的代码示例来指导你如何使用默认接口方法,lambda表达式,方法引用以及多重Annotation,之后你将会学到最新的API ...
- 学习《深度学习与计算机视觉算法原理框架应用》《大数据架构详解从数据获取到深度学习》PDF代码
<深度学习与计算机视觉 算法原理.框架应用>全书共13章,分为2篇,第1篇基础知识,第2篇实例精讲.用通俗易懂的文字表达公式背后的原理,实例部分提供了一些工具,很实用. <大数据架构 ...
- Java内存模型(JMM)详解
在Java JVM系列文章中有朋友问为什么要JVM,Java虚拟机不是已经帮我们处理好了么?同样,学习Java内存模型也有同样的问题,为什么要学习Java内存模型.它们的答案是一致的:能够让我们更好的 ...
- 词向量模型word2vector详解
目录 前言 1.背景知识 1.1.词向量 1.2.one-hot模型 1.3.word2vec模型 1.3.1.单个单词到单个单词的例子 1.3.2.单个单词到单个单词的推导 2.CBOW模型 3.s ...
- Echars 6大公共组件详解
Echars 六大组件详解 : title tooltip toolbox legend dataZoom visualMap 一.title标题详解 myTitleStyle = { color ...
- Python 自动化测试全攻略:五种自动化测试模型实战详解
随着移动互联网的发展,软件研发模型逐步完善,软件交付质量越来越受到软件公司的重视,软件测试技术特别是自动化测试技术开始在软件系统研发过程中发挥着越来越重要的作用. 与传统的手工测试技术相比,自动化测试 ...
随机推荐
- 重新整理数据结构与算法(c#)—— 算法套路动态规划算法[二十六]
前言 动态规划算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法. 这样一听和分治算法有点相似啊. 是的,分治算法也是将大问题分为小问题,但是他们毕竟不同,不同之处在什么地 ...
- 利用PyTorch训练模型识别数字+英文图片验证码
利用PyTorch训练模型识别数字+英文图片验证码 摘要:使用深度学习框架PyTorch来训练模型去识别4-6位数字+字母混合图片验证码(我们可以使用第三方库captcha生成这种图片验证码或者自己收 ...
- 论文记载:A Survey on Traffic Signal Control Methods
ABSTRACT 交通信号控制是一个重要且具有挑战性的现实问题,其目标是通过协调车辆在道路交叉口的移动来最小化车辆的行驶时间.目前使用的交通信号控制系统仍然严重依赖过于简单的信息和基于规则的方法,尽管 ...
- 用fpga实现1G Eth TCP&UDP硬件协议栈
用fpga实现的1G 以太网硬件协议栈,属于轻的协议栈
- Elasticsearch与kibana的单机安装
前言 本文为纯实操记录,以供需要时查阅. 对应版本为7.3,jdk版本1.8 Elasticsearch安装 Elasticsearch官网:https://www.elastic.co/cn/pro ...
- 使用pycuda替换字符串,使用cuda替换字符串
写一个python的cuda程序,实现字符串列表的字符串替换,把所有的123替换成xinyuuliu 以下是一个简单的 Python CUDA 代码示例,用于实现字符串列表的字符串替换.它使用了 NV ...
- 19_非单文件名组件中VueComponent构造函数&重要的内置关系
总结: 关于VueComponent: 1.school组件本质上是一个名为VueComponent的构造函数,且不是程序员定义的,是Vue.extend生成的. 2.我们只需要写&l ...
- VisualStudio 调试时会不断刷新 WPF 应用渲染
在 VisualStudio 附加调试和没有用 VisualStudio 附加调试时,对应用程序是有不同的影响,如 VisualStudio 设计器将会在附加调试 WPF 应用的时候,不断刷新 WPF ...
- LVGL SCROLL循环滚动
一.案例测试 这里我使用LVGL的版本是8.3.3 运行案例 lvgl_examples\scroll\lv_example_scroll_6 效果如下所示 二.现象 这里先描述一下现象,当我们使用 ...
- Solution Set - 矩阵加速
A[HDU2604]求不含子串010和000的,长为\(n\)的01序列数. B[HDU6470]数列\(\{a_n\}:a_1=1,a_2=2,a_n=a_{n-1}+2a_{n-2}+n^3\), ...