[ABC261Ex] Game on Graph
Problem Statement
We have a directed graph with \(N\) vertices and \(M\) edges. Edge \(i\) is directed from Vertex \(A_i\) to \(B_i\).and has a weight of \(C_i\).
Initially, there is a piece on Vertex \(v\). Takahashi and Aoki will play a game where they alternate turns moving the piece as follows:
- If there is no edge that goes from the vertex on which the piece is placed, end the game.
- If there are edges that go from the vertex on which the piece is placed, choose one of those edges and move the piece along that edge.
Takahashi goes first. Takahashi tries to minimize the total weight of the edges traversed by the piece, and Aoki tries to maximize it.
More formally, their objectives are as follows.
Takahashi gives the first priority to ending the game in a finite number of moves. If this is possible, he tries to minimize the total weight of the edges traversed by the piece.
Aoki gives the first priority to preventing the game from ending in a finite number of moves. If this is impossible, he tries to maximize the total weight of the edges traversed by the piece.
(If the piece traverses the same edge multiple times, the weight is added that number of times.)
Determine whether the game ends in a finite number of moves when both players play optimally. If it ends, find the total weight of the edges traversed by the piece.
Constraints
- \(1≤N≤2×10^5\)
- \(0≤M≤2×10^5\)
- \(1\le v≤N\)
- \(1≤A_i,B_i≤N\)
- There is no multi-edges. That is, \((A_i,B_i)\ne (A_j,B_j)\) for \(i\ne j\)
- There is no self-loops. That is, \(A_i\ne B_i\).
- \(0≤C≤10 ^9\)
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
\(N\) \(M\) \(v\)
\(A_1\) \(B_1\) \(C_1\)
\(A_2\) \(B_2\) \(C_2\)
⋮
\(A_M\) \(B_M\) \(C_M\)
Output
If the game does not end in a finite number of moves when both players play optimally, print INFINITY.
If the game ends in a finite number of moves, print the total weight of the edges traversed by the piece.
Sample Input 1
7 6 1
1 2 1
1 3 10
2 4 100
2 5 102
3 6 20
3 7 30
Sample Output 1
40
First, Takahashi will move the piece to Vertex \(3\). Next, Aoki will move the piece to Vertex \(7\), and the game will end.
The total weight of the edges traversed by the piece will be \(10+30=40\).
Sample Input 2
3 6 3
1 2 1
2 1 2
2 3 3
3 2 4
3 1 5
1 3 6
Sample Output 2
INFINITY
The game will not end in a finite number of moves.
Sample Input 3
4 4 1
1 2 1
2 3 1
3 1 1
2 4 1
Sample Output 3
5
The piece will go \(1→2→3→1→2→4\).
假设图是一个有向无环图,那么直接使用 DAG 上 dp 即可。轮到 Alice 时在所有后继节点中取最小值。轮到 Bob 时在所有后继节点中取最大值。
那么如果是有环呢?有环的 min/max dp 的经典解法是跑最短路。把无后继的节点入堆,图建成反图,跑 dij 就行了。
但是这个 dp 有时候取最大值,有时候取最小值,好像很难处理。
首先如果轮到 Alice 的话,直接取最小值。因为 dij 的堆用小根堆,所以Alice的dp值直接跑dij是正确的。
但是如果轮到 Bob,他的值不像 Alice,需要所有的后继节点更新后,才能更新 Bob 的dp值。而且他是希望可以在博弈中跑出死循环的,所以如果不是所有的后继节点都更新得到,他就不更新。我们可以使用类似拓扑的方式处理。记录入度,然后松弛时入度减一。
那么想清楚代码就很好写了。
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=2e5+5;
struct node{
int v,k;
LL w;
bool operator<(const node&n)const{
return w>n.w;
}
};
struct edge{
int v,nxt,w;
}e[N<<1];
int hd[N],n,m,s,u,v,w,e_num,in[N],vis[N][2];
LL dis[N][2];
priority_queue<node>q;
void add_edge(int u,int v,int w)
{
e[++e_num]=(edge){v,hd[u],w};
hd[u]=e_num;
}
void dijkstra()
{
for(int i=1;i<=n;i++)
{
if(!in[i])
{
q.push((node){i,0,0});
q.push((node){i,1,0});
}
else
dis[i][0]=0x7f7f7f7f7f7f7f7f;
}
// printf("%d\n",dis[1][0]);
while(!q.empty())
{
int v=q.top().v,k=q.top().k;
// printf("%d %d %d\n",v,k,dis[v][k]);
q.pop();
if(vis[v][k])
continue;
if(k)
{
for(int i=hd[v];i;i=e[i].nxt)
{
// if(v==2)
// printf("%d %d %d\n",e[i].v,dis[v][1]+e[i].w,dis[e[i].v][0]);
if(dis[v][1]+e[i].w<dis[e[i].v][0])
{
dis[e[i].v][0]=dis[v][1]+e[i].w;
q.push((node){e[i].v,0,dis[e[i].v][0]});
}
}
}
else
{
for(int i=hd[v];i;i=e[i].nxt)
{
in[e[i].v]--;
if(dis[v][0]+e[i].w>dis[e[i].v][1])
{
dis[e[i].v][1]=dis[v][0]+e[i].w;
// q.push((node){e[i].v,1,-dis[e[i].v][1]});
}
if(!in[e[i].v])
q.push((node){e[i].v,1,dis[e[i].v][1]});
}
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&s);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w),in[u]++;
add_edge(v,u,w);
}
dijkstra();
if(dis[s][0]>1e18)
printf("INFINITY");
else
printf("%lld",dis[s][0]);
}
[ABC261Ex] Game on Graph的更多相关文章
- [开发笔记] Graph Databases on developing
TimeWall is a graph databases github It be used to apply mathematic model and social network with gr ...
- Introduction to graph theory 图论/脑网络基础
Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...
- POJ 2125 Destroying the Graph 二分图最小点权覆盖
Destroying The Graph Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8198 Accepted: 2 ...
- [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- [LeetCode] Graph Valid Tree 图验证树
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- [LeetCode] Clone Graph 无向图的复制
Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...
- 讲座:Influence maximization on big social graph
Influence maximization on big social graph Fanju PPT链接: social influence booming of online social ne ...
- zabbix利用api批量添加item,并且批量配置添加graph
关于zabbix的API见,zabbixAPI 1item批量添加 我是根据我这边的具体情况来做的,本来想在模板里面添加item,但是看了看API不支持,只是支持在host里面添加,所以我先在一个ho ...
- Theano Graph Structure
Graph Structure Graph Definition theano's symbolic mathematical computation, which is composed of: A ...
- 纸上谈兵: 图 (graph)
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 图(graph)是一种比较松散的数据结构.它有一些节点(vertice),在某些节 ...
随机推荐
- 在原生APP中集成Unity容器
随着技术的发展,越来越多的APP期望拥有3D,AR的能力.要达到这个目标可以选择使用原生开发,也可以使用Unity成熟的3D开发技术链,通过嵌入的方式将Unity容器嵌入到APP中.这里介绍的是通过嵌 ...
- 推荐一款免费好用的远程桌面:Getscreen
因为平时有多台设备要用,所以远程桌面是我经常要使用的工具. 最近,正好看到一款不错的远程桌面软件,马上拿出来推荐给大家,如果有需要的可以看看. 今天要推荐的远程桌面软件就是这款叫Getscreen的软 ...
- Go 并发编程 - runtime 协程调度(三)
Go Runtime Go runtime 可以形象的理解为 Go 程序运行时的环境,类似于 JVM.不同于 JVM 的是,Go 的 runtime 与业务程序直接打包在一块,是一个可执行文件,直接运 ...
- Sealos 新功能“定时任务”上线(省钱大杀器)
流量高峰时段资源不足?低流量时段服务器成本过高? 本着好用又省钱的目标,sealos 推出 定时任务 功能,保证稳定的同时降低成本. Sealos 国内集群:https://cloud.sealos. ...
- MySQL实战实战系列 04 深入浅出索引(上)
提到数据库索引,我想你并不陌生,在日常工作中会经常接触到.比如某一个 SQL 查询比较慢,分析完原因之后,你可能就会说"给某个字段加个索引吧"之类的解决方案.但到底什么是索引,索引 ...
- Use Closures Not Enumerations
http://c2.com/ Use Closures Not Enumerations I was really disappointed when this turned out not to ...
- 13.1 使用DirectX9绘图引擎
DirectX 9 是由微软开发的一组多媒体应用程序接口API,用于创建和运行基于Windows平台的多媒体应用程序,尤其是游戏.它是DirectX系列中的一个版本,于2002年发布,是DirectX ...
- Python+Softmax+MNIST
# -*- coding: utf-8 -*- """ 用神经网络搭建的softmax线性分离器 Softmax是用于分类过程,用来实现多分类的,简单来说,它把一些输出的 ...
- 使用PasteSpider把你的代码升级到服务器的Docker/Podman上,K8S太庞大,PasteSpider极易上手!
如果你的服务器的内存小于16GB,那么K8S就和你无缘了,但是你可以使用PasteSpider来实现发布你的项目到服务器上! PasteSpider是一个运维工具,使用NET编写的,部署于服务器的Do ...
- 面向生产的 LLM 优化
注意 : 本文同时也是 Transformers 的文档. 以 GPT3/4.Falcon 以及 LLama 为代表的大语言模型 (Large Language Model,LLM) 在处理以人为中心 ...