[ABC261Ex] Game on Graph
Problem Statement
We have a directed graph with \(N\) vertices and \(M\) edges. Edge \(i\) is directed from Vertex \(A_i\) to \(B_i\).and has a weight of \(C_i\).
Initially, there is a piece on Vertex \(v\). Takahashi and Aoki will play a game where they alternate turns moving the piece as follows:
- If there is no edge that goes from the vertex on which the piece is placed, end the game.
- If there are edges that go from the vertex on which the piece is placed, choose one of those edges and move the piece along that edge.
Takahashi goes first. Takahashi tries to minimize the total weight of the edges traversed by the piece, and Aoki tries to maximize it.
More formally, their objectives are as follows.
Takahashi gives the first priority to ending the game in a finite number of moves. If this is possible, he tries to minimize the total weight of the edges traversed by the piece.
Aoki gives the first priority to preventing the game from ending in a finite number of moves. If this is impossible, he tries to maximize the total weight of the edges traversed by the piece.
(If the piece traverses the same edge multiple times, the weight is added that number of times.)
Determine whether the game ends in a finite number of moves when both players play optimally. If it ends, find the total weight of the edges traversed by the piece.
Constraints
- \(1≤N≤2×10^5\)
- \(0≤M≤2×10^5\)
- \(1\le v≤N\)
- \(1≤A_i,B_i≤N\)
- There is no multi-edges. That is, \((A_i,B_i)\ne (A_j,B_j)\) for \(i\ne j\)
- There is no self-loops. That is, \(A_i\ne B_i\).
- \(0≤C≤10 ^9\)
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
\(N\) \(M\) \(v\)
\(A_1\) \(B_1\) \(C_1\)
\(A_2\) \(B_2\) \(C_2\)
⋮
\(A_M\) \(B_M\) \(C_M\)
Output
If the game does not end in a finite number of moves when both players play optimally, print INFINITY.
If the game ends in a finite number of moves, print the total weight of the edges traversed by the piece.
Sample Input 1
7 6 1
1 2 1
1 3 10
2 4 100
2 5 102
3 6 20
3 7 30
Sample Output 1
40
First, Takahashi will move the piece to Vertex \(3\). Next, Aoki will move the piece to Vertex \(7\), and the game will end.
The total weight of the edges traversed by the piece will be \(10+30=40\).
Sample Input 2
3 6 3
1 2 1
2 1 2
2 3 3
3 2 4
3 1 5
1 3 6
Sample Output 2
INFINITY
The game will not end in a finite number of moves.
Sample Input 3
4 4 1
1 2 1
2 3 1
3 1 1
2 4 1
Sample Output 3
5
The piece will go \(1→2→3→1→2→4\).
假设图是一个有向无环图,那么直接使用 DAG 上 dp 即可。轮到 Alice 时在所有后继节点中取最小值。轮到 Bob 时在所有后继节点中取最大值。
那么如果是有环呢?有环的 min/max dp 的经典解法是跑最短路。把无后继的节点入堆,图建成反图,跑 dij 就行了。
但是这个 dp 有时候取最大值,有时候取最小值,好像很难处理。
首先如果轮到 Alice 的话,直接取最小值。因为 dij 的堆用小根堆,所以Alice的dp值直接跑dij是正确的。
但是如果轮到 Bob,他的值不像 Alice,需要所有的后继节点更新后,才能更新 Bob 的dp值。而且他是希望可以在博弈中跑出死循环的,所以如果不是所有的后继节点都更新得到,他就不更新。我们可以使用类似拓扑的方式处理。记录入度,然后松弛时入度减一。
那么想清楚代码就很好写了。
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=2e5+5;
struct node{
int v,k;
LL w;
bool operator<(const node&n)const{
return w>n.w;
}
};
struct edge{
int v,nxt,w;
}e[N<<1];
int hd[N],n,m,s,u,v,w,e_num,in[N],vis[N][2];
LL dis[N][2];
priority_queue<node>q;
void add_edge(int u,int v,int w)
{
e[++e_num]=(edge){v,hd[u],w};
hd[u]=e_num;
}
void dijkstra()
{
for(int i=1;i<=n;i++)
{
if(!in[i])
{
q.push((node){i,0,0});
q.push((node){i,1,0});
}
else
dis[i][0]=0x7f7f7f7f7f7f7f7f;
}
// printf("%d\n",dis[1][0]);
while(!q.empty())
{
int v=q.top().v,k=q.top().k;
// printf("%d %d %d\n",v,k,dis[v][k]);
q.pop();
if(vis[v][k])
continue;
if(k)
{
for(int i=hd[v];i;i=e[i].nxt)
{
// if(v==2)
// printf("%d %d %d\n",e[i].v,dis[v][1]+e[i].w,dis[e[i].v][0]);
if(dis[v][1]+e[i].w<dis[e[i].v][0])
{
dis[e[i].v][0]=dis[v][1]+e[i].w;
q.push((node){e[i].v,0,dis[e[i].v][0]});
}
}
}
else
{
for(int i=hd[v];i;i=e[i].nxt)
{
in[e[i].v]--;
if(dis[v][0]+e[i].w>dis[e[i].v][1])
{
dis[e[i].v][1]=dis[v][0]+e[i].w;
// q.push((node){e[i].v,1,-dis[e[i].v][1]});
}
if(!in[e[i].v])
q.push((node){e[i].v,1,dis[e[i].v][1]});
}
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&s);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w),in[u]++;
add_edge(v,u,w);
}
dijkstra();
if(dis[s][0]>1e18)
printf("INFINITY");
else
printf("%lld",dis[s][0]);
}
[ABC261Ex] Game on Graph的更多相关文章
- [开发笔记] Graph Databases on developing
TimeWall is a graph databases github It be used to apply mathematic model and social network with gr ...
- Introduction to graph theory 图论/脑网络基础
Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...
- POJ 2125 Destroying the Graph 二分图最小点权覆盖
Destroying The Graph Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8198 Accepted: 2 ...
- [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- [LeetCode] Graph Valid Tree 图验证树
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- [LeetCode] Clone Graph 无向图的复制
Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...
- 讲座:Influence maximization on big social graph
Influence maximization on big social graph Fanju PPT链接: social influence booming of online social ne ...
- zabbix利用api批量添加item,并且批量配置添加graph
关于zabbix的API见,zabbixAPI 1item批量添加 我是根据我这边的具体情况来做的,本来想在模板里面添加item,但是看了看API不支持,只是支持在host里面添加,所以我先在一个ho ...
- Theano Graph Structure
Graph Structure Graph Definition theano's symbolic mathematical computation, which is composed of: A ...
- 纸上谈兵: 图 (graph)
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 图(graph)是一种比较松散的数据结构.它有一些节点(vertice),在某些节 ...
随机推荐
- ATtiny88初体验(一):点灯
ATtiny88初体验(一):点灯 最近逛淘宝时,发现一块ATtiny88核心板(MH-ET LIVE Tiny88)用完红包后只剩4块钱了,果断下单,准备好好把玩一番. MH-ET LIVE Tin ...
- 千万级数据深分页查询SQL性能优化实践
一.系统介绍和问题描述 如何在Mysql中实现上亿数据的遍历查询?先来介绍一下系统主角:关注系统,主要是维护京东用户和业务对象之前的关注关系:并对外提供各种关系查询,比如查询用户的关注商品或店铺列表, ...
- 《Kali渗透基础》09. 漏洞利用、后渗透
@ 目录 1:漏洞基本介绍 1.1:漏洞从哪里来 1.2:缓冲区溢出 1.3:如何发现漏洞 2:漏洞利用 2.1:EXP 选择与修改 2.2:避免有害的 EXP 3:后渗透阶段 3.1:Linux 上 ...
- 淘宝详情api接口的使用说明
淘宝详情API接口是一种可以用来获取淘宝商品详细信息的服务,包括图片.标题.价格.销量.评论等数据.下面是淘宝详情API接口的使用说明: 1.关于申请API接口权限: 在使用淘宝详情API接口前,需要 ...
- CodeForces-1324E-Sleeping-Schedule
题意 \(Vova\)有一个睡眠时间表,一天有\(h\)小时,\(Vova\)会睡\(n\)次觉,一次睡一天,在第\(i-1\)次睡醒后,\(Vova\)在\(a_i\)或\(a_i-1\)个小时候可 ...
- 《Python魔法大冒险》007 被困的精灵:数据类型的解救
小鱼和魔法师深入魔法森林,树木之间流淌着神秘的光芒,每一片叶子都似乎在低语着古老的咒语.不久,他们来到了一个小湖旁,湖中央有一个小岛,岛上困着一个透明的泡泡,里面有一个悲伤的精灵. 小鱼看着那个精灵, ...
- 我的新书《Flink大数据分析实战》出版啦
- 「atcoder - ABC215G」Colorful Candies 2
link. 称题目中的 \(c_i\) 为 \(a_i\),令 \(c_i\) 为第 \(i\) 种颜色的出现次数,令 \(C\) 为颜色总数.固定 \(k\),令 \(t_i=1\),如果颜色 \( ...
- centos7离线安装docker和docker-compose
1.找一台可联网的centos7主机 在这台可以联网的机器上把离线包都下载好. 2.下载docker rpm安装包和相关依赖 ## 安装yum-utils包,添加docker yum源 sudo yu ...
- 使用 OpenTelemetry 构建 .NET 应用可观测性(3):.NET SDK 概览
目录 前言 概览 opentelemetry-dotnet opentelemetry-dotnet-contrib opentelemetry-dotnet-instrumentation SDK ...