使用 DDPO 在 TRL 中微调 Stable Diffusion 模型
引言
扩散模型 (如 DALL-E 2、Stable Diffusion) 是一类文生图模型,在生成图像 (尤其是有照片级真实感的图像) 方面取得了广泛成功。然而,这些模型生成的图像可能并不总是符合人类偏好或人类意图。因此出现了对齐问题,即如何确保模型的输出与人类偏好 (如“质感”) 一致,或者与那种难以通过提示来表达的意图一致?这里就有强化学习的用武之地了。
在大语言模型 (LLM) 领域,强化学习 (RL) 已被证明是能让目标模型符合人类偏好的非常有效的工具。这是 ChatGPT 等系统卓越性能背后的主要秘诀之一。更准确地说,强化学习是人类反馈强化学习 (RLHF) 的关键要素,它使 ChatGPT 能像人类一样聊天。
在 Training Diffusion Models with Reinforcement Learning 一文中,Black 等人展示了如何利用 RL 来对扩散模型进行强化,他们通过名为去噪扩散策略优化 (Denoising Diffusion Policy Optimization,DDPO) 的方法针对模型的目标函数实施微调。
在本文中,我们讨论了 DDPO 的诞生、简要描述了其工作原理,并介绍了如何将 DDPO 加入 RLHF 工作流中以实现更符合人类审美的模型输出。然后,我们切换到实战,讨论如何使用 trl
库中新集成的 DDPOTrainer
将 DDPO 应用到模型中,并讨论我们在 Stable Diffusion 上运行 DDPO 的发现。
DDPO 的优势
DDPO 并非解决 如何使用 RL 微调扩散模型
这一问题的唯一有效答案。
在进一步深入讨论之前,我们强调一下在对 RL 解决方案进行横评时需要掌握的两个关键点:
- 计算效率是关键。数据分布越复杂,计算成本就越高。
- 近似法很好,但由于近似值不是真实值,因此相关的错误会累积。
在 DDPO 之前,奖励加权回归 (Reward-Weighted Regression,RWR) 是使用强化学习微调扩散模型的主要方法。RWR 重用了扩散模型的去噪损失函数、从模型本身采样得的训练数据以及取决于最终生成样本的奖励的逐样本损失权重。该算法忽略中间的去噪步骤/样本。虽然有效,但应该注意两件事:
- 通过对逐样本损失进行加权来进行优化,这是一个最大似然目标,因此这是一种近似优化。
- 加权后的损失甚至不是精确的最大似然目标,而是从重新加权的变分界中得出的近似值。
所以,根本上来讲,这是一个两阶近似法,其对性能和处理复杂目标的能力都有比较大的影响。
DDPO 始于此方法,但 DDPO 没有将去噪过程视为仅关注最终样本的单个步骤,而是将整个去噪过程构建为多步马尔可夫决策过程 (MDP),只是在最后收到奖励而已。这样做的好处除了可以使用固定的采样器之外,还为让代理策略成为各向同性高斯分布 (而不是任意复杂的分布) 铺平了道路。因此,该方法不使用最终样本的近似似然 (即 RWR 的做法),而是使用易于计算的每个去噪步骤的确切似然 ( \(\ell(\mu, \sigma^2; x ) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_ {i=1}^n (x_i - \mu)^2\) )。
如果你有兴趣了解有关 DDPO 的更多详细信息,我们鼓励你阅读 原论文 及其 附带的博文。
DDPO 算法简述
考虑到我们用 MDP 对去噪过程进行建模以及其他因素,求解该优化问题的首选工具是策略梯度方法。特别是近端策略优化 (PPO)。整个 DDPO 算法与近端策略优化 (PPO) 几乎相同,仅对 PPO 的轨迹收集部分进行了比较大的修改。
下图总结了整个算法流程:
DDPO 和 RLHF: 合力增强美观性
RLHF 的一般训练步骤如下:
- 有监督微调“基础”模型,以学习新数据的分布。
- 收集偏好数据并用它训练奖励模型。
- 使用奖励模型作为信号,通过强化学习对模型进行微调。
需要指出的是,在 RLHF 中偏好数据是获取人类反馈的主要来源。
DDPO 加进来后,整个工作流就变成了:
- 从预训练的扩散模型开始。
- 收集偏好数据并用它训练奖励模型。
- 使用奖励模型作为信号,通过 DDPO 微调模型
请注意,DDPO 工作流把原始 RLHF 工作流中的第 3 步省略了,这是因为经验表明 (后面你也会亲眼见证) 这是不需要的。
下面我们实战一下,训练一个扩散模型来输出更符合人类审美的图像,我们分以下几步来走:
- 从预训练的 Stable Diffusion (SD) 模型开始。
- 在 美学视觉分析 (Aesthetic Visual Analysis,AVA) 数据集上训练一个带有可训回归头的冻结 CLIP 模型,用于预测人们对输入图像的平均喜爱程度。
- 使用美学预测模型作为奖励信号,通过 DDPO 微调 SD 模型。
记住这些步骤,下面开始干活:
使用 DDPO 训练 Stable Diffusion
环境设置
首先,要成功使用 DDPO 训练模型,你至少需要一个英伟达 A100 GPU,低于此规格的 GPU 很容易遇到内存不足问题。
使用 pip 安装 trl
库
pip install trl[diffusers]
主库安装好后,再安装所需的训练过程跟踪和图像处理相关的依赖库。注意,安装完 wandb
后,请务必登录以将结果保存到个人帐户。
pip install wandb torchvision
注意: 如果不想用 wandb
,你也可以用 pip
安装 tensorboard
。
演练一遍
trl
库中负责 DDPO 训练的主要是 DDPOTrainer
和 DDPOConfig
这两个类。有关 DDPOTrainer
和 DDPOConfig
的更多信息,请参阅 相应文档。 trl
代码库中有一个 示例训练脚本。它默认使用这两个类,并有一套默认的输入和参数用于微调 RunwayML
中的预训练 Stable Diffusion 模型。
此示例脚本使用 wandb
记录训练日志,并使用美学奖励模型,其权重是从公开的 Hugging Face 存储库读取的 (因此数据收集和美学奖励模型训练均已经帮你做完了)。默认提示数据是一系列动物名。
用户只需要一个命令行参数即可启动脚本。此外,用户需要有一个 Hugging Face 用户访问令牌,用于将微调后的模型上传到 Hugging Face Hub。
运行以下 bash 命令启动程序:
python stable_diffusion_tuning.py --hf_user_access_token <token>
下表列出了影响微调结果的关键超参数:
参数 | 描述 | 单 GPU 训练推荐值(迄今为止) |
---|---|---|
num_epochs |
训练 epoch 数 |
200 |
train_batch_size |
训练 batch size | 3 |
sample_batch_size |
采样 batch size | 6 |
gradient_accumulation_steps |
梯度累积步数 | 1 |
sample_num_steps |
采样步数 | 50 |
sample_num_batches_per_epoch |
每个 epoch 的采样 batch 数 |
4 |
per_prompt_stat_tracking |
是否跟踪每个提示的统计信息。如果为 False ,将使用整个 batch 的平均值和标准差来计算优势,而不是对每个提示进行跟踪 |
True |
per_prompt_stat_tracking_buffer_size |
用于跟踪每个提示的统计数据的缓冲区大小 | 32 |
mixed_precision |
混合精度训练 | True |
train_learning_rate |
学习率 | 3e-4 |
这个脚本仅仅是一个起点。你可以随意调整超参数,甚至彻底修改脚本以适应不同的目标函数。例如,可以集成一个测量 JPEG 压缩度的函数或 使用多模态模型评估视觉文本对齐度的函数 等。
经验与教训
- 尽管训练提示很少,但其结果似乎已经足够泛化。对于美学奖励函数而言,该方法已经得到了彻底的验证。
- 尝试通过增加训练提示数以及改变提示来进一步泛化美学奖励函数,似乎反而会减慢收敛速度,但对模型的泛化能力收效甚微。
- 虽然推荐使用久经考验 LoRA,但非 LoRA 也值得考虑,一个经验证据就是,非 LoRA 似乎确实比 LoRA 能产生相对更复杂的图像。但同时,非 LoRA 训练的收敛稳定性不太好,对超参选择的要求也高很多。
- 对于非 LoRA 的超参建议是: 将学习率设低点,经验值是大约
1e-5
,同时将mixed_ precision
设置为None
。
结果
以下是提示 bear
、 heaven
和 dune
微调前 (左) 、后 (右) 的输出 (每行都是一个提示的输出):
微调前 | 微调后 |
---|---|
限制
- 目前
trl
的DDPOTrainer
仅限于微调原始 SD 模型; - 在我们的实验中,主要关注的是效果较好的 LoRA。我们也做了一些全模型训练的实验,其生成的质量会更好,但超参寻优更具挑战性。
总结
像 Stable Diffusion 这样的扩散模型,当使用 DDPO 进行微调时,可以显著提高图像的主观质感或其对应的指标,只要其可以表示成一个目标函数的形式。
DDPO 的计算效率及其不依赖近似优化的能力,在扩散模型微调方面远超之前的方法,因而成为微调扩散模型 (如 Stable Diffusion) 的有力候选。
trl
库的 DDPOTrainer
实现了 DDPO 以微调 SD 模型。
我们的实验表明 DDPO 对很多提示具有相当好的泛化能力,尽管进一步增加提示数以增强泛化似乎效果不大。为非 LoRA 微调找到正确超参的难度比较大,这也是我们得到的重要经验之一。
DDPO 是一种很有前途的技术,可以将扩散模型与任何奖励函数结合起来,我们希望通过其在 TRL 中的发布,社区可以更容易地使用它!
致谢
感谢 Chunte Lee 提供本博文的缩略图。
英文原文: https://hf.co/blog/trl-ddpo
原文作者: Luke Meyers,Sayak Paul,Kashif Rasul,Leandro von Werra
译者: Matrix Yao (姚伟峰),英特尔深度学习工程师,工作方向为 transformer-family 模型在各模态数据上的应用及大规模模型的训练推理。
审校/排版: zhongdongy (阿东)
使用 DDPO 在 TRL 中微调 Stable Diffusion 模型的更多相关文章
- Diffusers中基于Stable Diffusion的哪些图像操作
目录 辅助函数 Text-To-Image Image-To-Image In-painting Upscale Instruct-Pix2Pix 基于Stable Diffusion的哪些图像操作们 ...
- 使用 LoRA 进行 Stable Diffusion 的高效参数微调
LoRA: Low-Rank Adaptation of Large Language Models 是微软研究员引入的一项新技术,主要用于处理大模型微调的问题.目前超过数十亿以上参数的具有强能力的大 ...
- 在英特尔 CPU 上加速 Stable Diffusion 推理
前一段时间,我们向大家介绍了最新一代的 英特尔至强 CPU (代号 Sapphire Rapids),包括其用于加速深度学习的新硬件特性,以及如何使用它们来加速自然语言 transformer 模型的 ...
- AI绘画提示词创作指南:DALL·E 2、Midjourney和 Stable Diffusion最全大比拼 ⛵
作者:韩信子@ShowMeAI 深度学习实战系列:https://www.showmeai.tech/tutorials/42 自然语言处理实战系列:https://www.showmeai.tech ...
- 从 GPT2 到 Stable Diffusion:Elixir 社区迎来了 Hugging Face
上周,Elixir 社区向大家宣布,Elixir 语言社区新增从 GPT2 到 Stable Diffusion 的一系列神经网络模型.这些模型得以实现归功于刚刚发布的 Bumblebee 库.Bum ...
- 基于Docker安装的Stable Diffusion使用CPU进行AI绘画
基于Docker安装的Stable Diffusion使用CPU进行AI绘画 由于博主的电脑是为了敲代码考虑买的,所以专门买的高U低显,i9配核显,用Stable Diffusion进行AI绘画的话倒 ...
- Stable Diffusion魔法入门
写在前面 本文为资料整合,没有原创内容,方便自己查找和学习, 花费了一晚上把sd安装好,又花了大半天了解sd周边的知识,终于体会到为啥这些生成式AI被称为魔法了,魔法使用前要吟唱类比到AI上不就是那些 ...
- Window10环境下,Stable Diffusion的本地部署与效果展示
Diffusion相关技术最近也是非常火爆,看看招聘信息,岗位名称都由AI算法工程师变成了AIGC算法工程师,本周跟大家分享一些Diffusion算法相关的内容. Window10环境下,Stable ...
- Stable Diffusion 关键词tag语法教程
提示词 Prompt Prompt 是输入到文生图模型的文字,不同的 Prompt 对于生成的图像质量有较大的影响 支持的语言Stable Diffusion, NovelAI等模型支持的输入语言为英 ...
- 最新版本 Stable Diffusion 开源AI绘画工具之部署篇
目录 AI绘画 本地环境要求 下载 Stable Diffusion 运行启动 AI绘画 关于 AI 绘画最近有多火,既然你有缘能看到这篇文章,那么相信也不需要我过多赘述了吧? 随着 AI 绘画技术的 ...
随机推荐
- 记一次.Net分布式事务死锁现象以及解决方法
在本文中,将介绍一次遇到的.Net分布式事务死锁现象以及解决方法.我们将首先了解事务框架的构成,然后分析导致死锁的代码,最后提出解决方法. 事务框架 本次开发框架JMSFramework将分布式事务划 ...
- 4.7 x64dbg 应用层的钩子扫描
所谓的应用层钩子(Application-level hooks)是一种编程技术,它允许应用程序通过在特定事件发生时执行特定代码来自定义或扩展其行为.这些事件可以是用户交互,系统事件,或者其他应用程序 ...
- Unity的OnOpenAsset:深入解析与实用案例
Unity OnOpenAsset 在Unity中,OnOpenAsset是一个非常有用的回调函数,它可以在用户双击资源文件时自动打开一个编辑器窗口.这个回调函数可以用于自定义资源编辑,提高工作效率. ...
- ASP.NET MVC4 学习笔记-3
创建一个简单的数据录入程序--Create a Simple Data-Entry Application 在这篇博客中,我们将通过创建一个简单的数据录入程序来探索MVC的其他特点.在这一节中我们要跟 ...
- P3047 [USACO12FEB]Nearby Cows G 题解
P3047 [USACO12FEB]Nearby Cows G 题目描述 思路 使用换根DP, 设 \(dp[i][j]\) 表示以 \(i\) 为根节点的子树中深度小于等于 \(j\) 的点的权值之 ...
- 【Dotnet 工具箱】推荐一个使用 C# 开发的轻量级压测工具
你好,这里是 Dotnet 工具箱,定期分享 Dotnet 有趣,实用的工具和组件,希望对您有用! 轻量级压测工具 LoadTestToolbox 是一个使用 C# 开发的轻量级压测工具,基于 .NE ...
- Java List集合根据某字段去重
去重方法 单个字段为条件去重 /** * 单字段去重 * @param jackpotList1 新集合 * @param jackpotList 需要去重的集合 * @return */ priva ...
- DateTime和DateTimeOffset是同胞兄弟吗?
小编在日常开发中,用得最多的时间类型就是DateTime,直到一次偶然的邂逅,让小编遇见了DateTimeOffset.当时小编也是一脸迷茫,因为在小编的C#编程字典里就没出现过DateTimeOff ...
- VScode 中golang 单元测试,解决单元测试超时timeout30s
目的:单元测试的主要目的是验证代码的每个单元(函数.方法)是否按照预期工作. 提示:解决单元测试超时30s的问题在序号4 1 准备以_test.go结尾文件和导入testing包 在命名文件时需要让文 ...
- 通过 tree shaking 移除无用代码
tree shaking 依赖于ES Module 的静态语法分析,在项目编译时移除无用的代码以减少文件体积. usedExports 在文件中,我们可能定义了变量但是暂时又没有用到,这样会造成空间的 ...