比赛链接:Here

1367A. Short Substrings

Description

一个字符串 abac,然后把所有长度为2的子串加起来变成新串,abbaac,由 ab ba ac组成。现在给出新串,找出原串。

直接模拟即可

int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int _; for (cin >> _; _--;) {
string s; cin >> s;
cout << s[0];
for (int i = 1; i < s.size(); i += 2) cout << s[i];
cout << "\n";
}
}

1367B. Even Array

Description

给定一个数组。有一种操作,可以交换任意两个数的位置。要求的数组奇偶交替出现。最少需要多少次操作。

先统计一遍都多少个奇数不在位置上,和多少个偶数不在位置上。如果不相等,那么无解。反之,把他们放到对应的位置就好了。

int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int _; for (cin >> _; _--;) {
int n; cin >> n;
vector<int> a(n);
for (int &x : a) cin >> x;
int cnt0 = 0, cnt1 = 0, ans = 0;
for (int i = 0; i < n; ++i) {
cnt0 += a[i] % 2;
cnt1 += i % 2;
if (i % 2 == 1 && a[i] % 2 == 0) ans += 1;
}
if (cnt0 != cnt1) cout << "-1\n";
else cout << ans << "\n";
}
}

1367C. Social Distance

Description

给定一个01串。需要保证两个相邻的1之间的距离大于k。求原串在不违背题意的情况下,还能插入多少个1。

这个需要分情况考虑。左边连续的0单独计数。右边连续的0单独计数。中间出现的连续的0单独计数。

int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int _; for (cin >> _; _--;) {
int n, k; string s;
cin >> n >> k >> s;
int sum = 0, cnt = 0, pre = 0;
k += 1;
bool f = false;
for (int i = 0; i < n; ++i) {
if (s[i] == '0') cnt += 1;
else {
f = true;
if (pre == 0) sum += max(0, cnt / k);
else sum += max(0, (cnt - k + 1) / k);
pre = 1, cnt = 0;
}
}
sum += max(0, cnt / k);
if (!f) sum = max(1 + max(0, (n - 1) / k), sum);
cout << sum << "\n";
}
}
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int _; for (cin >> _; _--;) {
int n, k; string s;
cin >> n >> k >> s;
int sum = 0, cnt1 = 0, cnt0 = 0;
for (int i = 0; i < n; ++i) {
if (s[i] == '1') {
cnt1 += 1;
if (cnt1 == 1)
sum += cnt0 / (k + 1);
else {
sum += (cnt0 - k) / (k + 1);
cnt1 = 1;
}
cnt0 = 0;
}
if (s[i] == '0') cnt0 += 1;
if (i == n - 1 && s[i] == '0' && cnt1 != 0)
sum += cnt0 / (k + 1);
}
if (cnt1 == 0) sum += (cnt0 + k) / (k + 1);
cout << sum << "\n";
}
}

1367D. Task On The Board

Description

给定s串,删除一些字符,重新组合,得到t串。根据t串,可以计算一个b数组。$b_i = sum(|j-i|)$ if $t_j > t_i$,也就是所有比i位置大的字符的位置差的和。现在给定s和b数组,求t串。

首先肯定是找 \(b\) 数组为 \(0\) 的位置。因为\(0\) ,就表示,没有比他更大的字符了。然后这些位置填上了字符之后,对于非 \(0\) 的位置,他们都是有贡献的。把这些贡献从 \(b\) 数组中减掉,就又会尝试新的 \(0\) 的位置。就循环模拟这个过程就好了。

const int N = 50;
int b[N];
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int _; for (cin >> _; _--;) {
string s; int m;
cin >> s >> m;
for (int i = 0; i < m; ++i) cin >> b[i];
int cnt[30] = {};
for (auto c : s) cnt[c - 'a'] += 1;
int r = m, l = 25;
string t(m, '?');
while (r) {
int c = 0;
for (int i = 0; i < m; ++i)
if (!b[i]) c += 1;
while (cnt[l] < c) l -= 1;
for (int i = 0; i < m; ++i) {
if (!b[i]) {
t[i] = 'a' + l;
b[i] -= 1;
r -= 1;
}
}
for (int i = 0; i < m; ++i) {
if (t[i] == 'a' + l)
for (int j = 0; j < m; ++j)
if (b[j] > 0) b[j] -= abs(i - j);
}
l -= 1;
}
cout << t << "\n";
}
}

1367E. Necklace Assembly

Description

给定一堆字符。然后选出len个,围成一圈。且以k为循环节。即每转动k次,这个圈看上去是一模一样的。给定k。求最大的len。

以 \(K\) 为循环节。那么以 \(K\) 的因子 \(K\) 为循环节都可以。所以先枚举 \(K\) 的所有因子。然后对于每个循环节 \(K\) ,如果只由 \(K\) 个元素组成。那显然是可以的。但是要要枚举 \(2*k\) ,可不可以,\(3*k\) 可不可以,直到找到一个最大的 \(n*k\) 可行。那么对于循环节 \(k\) 。最大长度就是 \(n*k\) 。对所有枚举到的取 \(\max\) 就好了。

int check(int k, int cnt[]) {
int tmp = k;
for (int j = 2;; j += 1) {
int tt = 0;
for (int i = 0; i < 26; ++i) tt += cnt[i] / j;
if (tt >= k) tmp = j * k;
else return tmp;
}
}
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int _; for (cin >> _; _--;) {
int cnt[100] = {};
string s;
int n, m;
cin >> n >> m >> s;
for (int i = 0; i < n; ++i) cnt[s[i] - 'a'] += 1;
sort(cnt, cnt + 100);
reverse(cnt, cnt + 100);
int ans = 1;
for (int i = 1; i <= m && i <= n; ++i) {
if (m % i == 0)
ans = max(ans, check(i, cnt));
}
cout << ans << "\n";
}
}

1367F1. Flying Sort (Easy Version)

Description

一个数组,一次操作可以选择一个数,放到数组开头,或者放到末尾。问最少多少次操作可以使得数组有序。Easy版中所有元素各不相同。且数组长度 $< 3000$。

超级经典 DP + 离散化处理,一下

考虑求不需要动的元素。先对 \(a\) 数组离散化,变成值域 \(1\sim n\) 的数组。然后不需要动的元素是差值为 \(1\) 的连续上升子序列。DP 求这个最大长度就好了。其他的数都是要移动的。并且要移动一个数。至多只移动一次就好了。所以求出最长子序列长度,再用 \(n\) 减去就是答案了。

const int N = 1e6 + 10;
int a[N], b[N], f[N];
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int _; for (cin >> _; _--;) {
int n; cin >> n;
for (int i = 0; i < n; ++i) cin >> b[i], a[i] = b[i];
sort(b, b + n);
for (int i = 0; i <= n ; ++i) f[i] = 0;
for (int i = 0; i < n; ++i) a[i] = lower_bound(b, b + n, a[i]) - b + 1;
int ans = 0;
for (int i = 0; i < n; ++i) {
f[a[i]] = f[a[i] - 1] + 1;
ans = max(ans, f[a[i]]);
}
cout << n - ans << "\n";
}
}

1367F2. Flying Sort (Hard Version)

AC参考代码

const int N = 2e5 + 10;
int a[N], p[N];
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int _; for (cin >> _; _--;) {
int n; cin >> n;
for (int i = 0; i < n; ++i) cin >> a[i];
iota(p, p + n, 0);
sort(p, p + n, [&](int i, int j) {return a[i] < a[j] || a[i] == a[j] && i < j;});
int ans = 0;
for (int l = 0, r; l < n; l = r) {
for (r = l + 1; r < n && p[r] > p[r - 1]; ++r);
int cnt = r - l;
if (l)
for (int i = l - 1; i >= 0 && a[p[i]] == a[p[l - 1]]; i--)
if (p[i] < p[l]) cnt += 1;
if (r < n)
for (int i = r; i < n && a[p[i]] == a[p[r]]; ++i)
if (p[i] > p[r - 1]) ++ cnt;
ans = max(ans, cnt);
}
for (int l = 0, m, r; l < n; l = m) {
for (m = l; m < n && a[p[m]] == a[p[l]]; ++m);
if (m == n) break;
for (r = m; r < n && a[p[r]] == a[p[m]]; ++r);
for (int i = l, j = m; i < m; ++i) {
while (j < r && p[j] < p[i]) ++j;
ans = max(ans, i + 1 - l + r - j);
}
}
cout << n - ans << "\n";
}
}

Codeforces Round #650 (Div. 3) F1经典离散化DP的更多相关文章

  1. Codeforces Round #650 (Div. 3) F1. Flying Sort (Easy Version) (离散化,贪心)

    题意:有一组数,每次操作可以将某个数移到头部或者尾部,问最少操作多少次使得这组数非递减. 题解:先离散化将每个数映射为排序后所对应的位置,然后贪心,求最长连续子序列的长度,那么最少的操作次数一定为\( ...

  2. Codeforces Round #540 (Div. 3) F1. Tree Cutting (Easy Version) 【DFS】

    任意门:http://codeforces.com/contest/1118/problem/F1 F1. Tree Cutting (Easy Version) time limit per tes ...

  3. Codeforces Round #521 (Div. 3) F1. Pictures with Kittens (easy version)

    F1. Pictures with Kittens (easy version) 题目链接:https://codeforces.com/contest/1077/problem/F1 题意: 给出n ...

  4. Codeforces Round #174 (Div. 1) B. Cow Program(dp + 记忆化)

    题目链接:http://codeforces.com/contest/283/problem/B 思路: dp[now][flag]表示现在在位置now,flag表示是接下来要做的步骤,然后根据题意记 ...

  5. Codeforces Round #215 (Div. 2) D题(离散化+hash)

    D. Sereja ans Anagrams time limit per test 1 second memory limit per test 256 megabytes input standa ...

  6. Codeforces Round #545 (Div. 2) C. Skyscrapers 离散化+贪心

    题目链接 给你一个n∗m的矩阵res,让你输出一个n∗m的矩阵a,这个矩阵满足:给你一个n*m的矩阵res,让你输出一个n*m的矩阵a,这个矩阵满足:给你一个n∗m的矩阵res,让你输出一个n∗m的矩 ...

  7. Codeforces Round #547 (Div. 3) F 贪心 + 离散化

    https://codeforces.com/contest/1141/problem/F2 题意 一个大小为n的数组a[],问最多有多少个不相交的区间和相等 题解 离散化用值来做,贪心选择较前的区间 ...

  8. Codeforces Round #650 (Div. 3) C. Social Distance

    题目链接:https://codeforces.com/contest/1367/problem/C 题意 给出一个长为 $n$ 的 $01$字符串,两个相邻 $1$ 间距应大于 $k$,初始序列合法 ...

  9. Codeforces Round #650 (Div. 3) B. Even Array

    题目链接:https://codeforces.com/contest/1367/problem/B 题意 有一大小为 $n$ 的数组 $a$,问能否经过交换使所有元素与下标奇偶性相同(0 - ind ...

  10. Codeforces Round #650 (Div. 3) A. Short Substrings

    题目链接:https://codeforces.com/contest/1367/problem/A 题意 给出一个字符串 $t$,找出原字符串 $s$,$t$ 由 $s$ 从左至右的所有长为 $2$ ...

随机推荐

  1. 在ASP.NET Core 中使用 .NET Aspire 消息传递组件

    前言 云原生应用程序通常需要可扩展的消息传递解决方案,以提供消息队列.主题和订阅等功能..NET Aspire 组件简化了连接到各种消息传递提供程序(例如 Azure 服务总线)的过程.在本教程中,小 ...

  2. jmeter测试计划中的“独立运行每个线程组”Demo演示

    一:jmeter的运行顺序 测试计划-->线程组 其次执行顺序为:配置元件.前置处理器.定时器.取样器.后置处理器.断言.监听器 当一个测试计划中有多个线程组,当多个线程组都是是执行状态时,就会 ...

  3. mac电脑升级后wifi报感叹号连不上WiFi的问题

    我的mac电脑是2015款的makebook pro,13英寸,之前一直用的是10.14系统,后来看到系统更新一直在推10.15系统,我就升级了10.15系统,但是升级后就坑爹了,wifi标志直接就不 ...

  4. k8s安装Ingress-Nginx

    目前,DHorse(https://gitee.com/i512team/dhorse)只支持Ingress-nginx的Ingress实现,下面介绍Ingress-nginx的安装过程. 下载安装文 ...

  5. viewPager2页面的切换

    使用流程:   1.定义ViewPager   2.为ViewPager创建Adapter ViewPagerAdapter package com.example.viewpagerandfragm ...

  6. SpringBoot整合JavaMail

    1.发送简单邮件 导入依赖 implementation 'org.springframework.boot:spring-boot-starter-mail:3.0.2' 开启相关协议,获取密码~ ...

  7. K8S核心技术

    一.命令行工具Kubectl kubectl 是 Kubernetes 集群的命令行工具,通过 kubectl 能够对集群本身进行管理,并能 够在集群上进行容器化应用的安装部署 1.基本语法 kube ...

  8. django-celery-results - 使用 Django ORM/Cache 作为结果后端

    https://docs.celeryq.dev/en/stable/django/first-steps-with-django.html#django-celery-results-using-t ...

  9. 在k8s中快速搭建基于Prometheus监控系统

    公众号「架构成长指南」,专注于生产实践.云原生.分布式系统.大数据技术分享 前言 K8s本身不包含内置的监控工具,所以市场上有不少这样监控工具来填补这一空白,但是没有一个监控工具有prometheus ...

  10. ElasticSearch之cat shards API

    命令样例如下: curl -X GET "https://localhost:9200/_cat/shards?v=true&pretty" --cacert $ES_HO ...