bzoj 4773: 负环——倍增
Description
Input
Output
Sample Input
1 2 -2
2 1 1
2 3 -10
3 2 10
3 1 -10
1 3 10
Sample Output
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using std::min;
const int M=;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
typedef int mat[M][M];
mat f[],ly,now;
int n,m,ans;
bool pd(mat s){
for(int i=;i<=n;i++)if(s[i][i]<) return ;
return ;
}
void mins(int &x,int y){if(x>y) x=y;}
int main(){
int x,y,w;
n=read(); m=read();
memset(f,0x3f,sizeof(f));
for(int i=;i<=n;i++) f[][i][i]=;
for(int i=;i<=m;i++) x=read(),y=read(),w=read(),mins(f[][x][y],w);
for(int i=;i<=;i++){
for(int a=;a<=n;a++)
for(int c=;c<=n;c++)
for(int b=;b<=n;b++)
mins(f[i][a][b],f[i-][a][c]+f[i-][c][b]);
}
if(!pd(f[])) return puts(""),;
memset(ly,0x3f,sizeof(mat));
for(int i=;i<=n;i++) ly[i][i]=;
for(int i=;i>=;i--){
memset(now,0x3f,sizeof(mat));
for(int a=;a<=n;++a)
for(int c=;c<=n;++c)
for(int b=;b<=n;++b)
mins(now[a][b],f[i][a][c]+ly[c][b]);
if(!pd(now)){
ans|=<<i;
memcpy(ly,now,sizeof(mat));
}
}
printf("%d",ans+);
return ;
}
bzoj 4773: 负环——倍增的更多相关文章
- BZOJ 4773: 负环 倍增Floyd
现在看来这道题就非常好理解了. 可以将问题转化为求两点间经过 $k$ 个点的路径最小值,然后枚举剩余的那一个点即可. #include <cstdio> #include <cstr ...
- bzoj 4773: 负环 floyd
题目: 对于边带权的有向图,找出一个点数最小的环,使得环上的边权和为负. 2 <= n <= 300. 题解: 我们可以考虑从小到大枚举答案. 然后每次枚举更大的答案的时候就从当前的较小的 ...
- bzoj4773 负环 倍增+矩阵
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4773 题解 最小的负环的长度,等价于最小的 \(len\) 使得存在一条从点 \(i\) 到自 ...
- 【BZOJ4773】负环 倍增Floyd
[BZOJ4773]负环 Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得 环上的边权和为负数.保证图中不包含重边 ...
- 4.28 省选模拟赛 负环 倍增 矩阵乘法 dp
容易想到 这个环一定是简单环. 考虑如果是复杂环 那么显然对于其中的第一个简单环来说 要么其权值为负 如果为正没必要走一圈 走一部分即可. 对于前者 显然可以找到更小的 对于第二部分是递归定义的. 综 ...
- BZOJ4773: 负环(倍增Floyd)
题意 题目链接 Sol 倍增Floyd,妙妙喵 一个很显然的思路(然而我想不到是用\(f[k][i][j]\)表示从\(i\)号点出发,走\(k\)步到\(j\)的最小值 但是这样复杂度是\(O(n^ ...
- 负环 BZOJ 4773
负环 [问题描述] 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得环上的边权和为负数.保证图中不包含重边和自环. [输入格式] 第1两个 ...
- 递归型SPFA+二分答案 || 负环 || BZOJ 4773
题解: 基本思路是二分答案,每次用Dfs型SPFA验证该答案是否合法. 一点细节我注释在代码里了. 代码: #include<cstdio> #include<cstring> ...
- BZOJ_4773_负环_倍增弗洛伊德
BZOJ_4773_负环 Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得 环上的边权和为负数.保证图中不包含重边 ...
随机推荐
- winform 删除,清空指定文件夹上的所有文件或文件夹
//递归删除文件夹及子文件C#代码: public void DeleteFolder(string dir) { if (Directory.Exists(dir)) //如果存在这个文件夹删除之 ...
- SQL 跨库查询
使用SQL查询数据,不仅能查询当前库的数据,还可以跨数据库,甚至跨服务器查询. 下面给大家介绍一下跨服务器查询的步骤(以SQL Server为例): 1,建立数据库链接 EXEC sp_addlink ...
- Zigbee安全基础篇Part.2
原文地址: https://www.4hou.com/wireless/14252.html 导语:本文将会探讨ZigBee标准提供的安全模型,用于安全通信的各种密钥.ZigBee建议的密钥管理方法以 ...
- PokeCats开发者日志(十一)
现在是PokeCats游戏开发的第六十天的上午,易版权的状态变为了待收证,但愿不久就能送到了吧.
- win7 php连接远程oracle
<?php /* 先下载oracle客户端 下载地址 http://www.oracle.com/technetwork/topics/winx64soft-089540.html 下载如下三个 ...
- 第二部分shell编程2正则(grepegrepsedawk)
一.grep/egrep 1. 语法+选项语法: grep [-cinvABC] 'word' filename -c :打印符合要求的行数-n :在输出符合要求的行的同时连同行号一起输出 -v :打 ...
- InnoDB,select为啥会阻塞insert?
MySQL的InnoDB的细粒度行锁,是它最吸引人的特性之一. 但是,如<InnoDB,5项最佳实践>所述,如果查询没有命中索引,也将退化为表锁. InnoDB的细粒度锁,是实现在索引记录 ...
- 【POJ2976】Dropping Tests(分数规划)
[POJ2976]Dropping Tests(分数规划) 题面 Vjudge 翻译在\(Vjudge\)上有(而且很皮) 题解 简单的\(01\)分数规划 需要我们做的是最大化\(\frac{\su ...
- HDU2089:不要62——题解
http://acm.hdu.edu.cn/showproblem.php?pid=2089 Problem Description 杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer). 杭州交通管 ...
- [Leetcode] valid sudoku 有效数独
Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules. The Sudoku board could be ...