bzoj 4773: 负环——倍增
Description
Input
Output
Sample Input
1 2 -2
2 1 1
2 3 -10
3 2 10
3 1 -10
1 3 10
Sample Output
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using std::min;
const int M=;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
typedef int mat[M][M];
mat f[],ly,now;
int n,m,ans;
bool pd(mat s){
for(int i=;i<=n;i++)if(s[i][i]<) return ;
return ;
}
void mins(int &x,int y){if(x>y) x=y;}
int main(){
int x,y,w;
n=read(); m=read();
memset(f,0x3f,sizeof(f));
for(int i=;i<=n;i++) f[][i][i]=;
for(int i=;i<=m;i++) x=read(),y=read(),w=read(),mins(f[][x][y],w);
for(int i=;i<=;i++){
for(int a=;a<=n;a++)
for(int c=;c<=n;c++)
for(int b=;b<=n;b++)
mins(f[i][a][b],f[i-][a][c]+f[i-][c][b]);
}
if(!pd(f[])) return puts(""),;
memset(ly,0x3f,sizeof(mat));
for(int i=;i<=n;i++) ly[i][i]=;
for(int i=;i>=;i--){
memset(now,0x3f,sizeof(mat));
for(int a=;a<=n;++a)
for(int c=;c<=n;++c)
for(int b=;b<=n;++b)
mins(now[a][b],f[i][a][c]+ly[c][b]);
if(!pd(now)){
ans|=<<i;
memcpy(ly,now,sizeof(mat));
}
}
printf("%d",ans+);
return ;
}
bzoj 4773: 负环——倍增的更多相关文章
- BZOJ 4773: 负环 倍增Floyd
现在看来这道题就非常好理解了. 可以将问题转化为求两点间经过 $k$ 个点的路径最小值,然后枚举剩余的那一个点即可. #include <cstdio> #include <cstr ...
- bzoj 4773: 负环 floyd
题目: 对于边带权的有向图,找出一个点数最小的环,使得环上的边权和为负. 2 <= n <= 300. 题解: 我们可以考虑从小到大枚举答案. 然后每次枚举更大的答案的时候就从当前的较小的 ...
- bzoj4773 负环 倍增+矩阵
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4773 题解 最小的负环的长度,等价于最小的 \(len\) 使得存在一条从点 \(i\) 到自 ...
- 【BZOJ4773】负环 倍增Floyd
[BZOJ4773]负环 Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得 环上的边权和为负数.保证图中不包含重边 ...
- 4.28 省选模拟赛 负环 倍增 矩阵乘法 dp
容易想到 这个环一定是简单环. 考虑如果是复杂环 那么显然对于其中的第一个简单环来说 要么其权值为负 如果为正没必要走一圈 走一部分即可. 对于前者 显然可以找到更小的 对于第二部分是递归定义的. 综 ...
- BZOJ4773: 负环(倍增Floyd)
题意 题目链接 Sol 倍增Floyd,妙妙喵 一个很显然的思路(然而我想不到是用\(f[k][i][j]\)表示从\(i\)号点出发,走\(k\)步到\(j\)的最小值 但是这样复杂度是\(O(n^ ...
- 负环 BZOJ 4773
负环 [问题描述] 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得环上的边权和为负数.保证图中不包含重边和自环. [输入格式] 第1两个 ...
- 递归型SPFA+二分答案 || 负环 || BZOJ 4773
题解: 基本思路是二分答案,每次用Dfs型SPFA验证该答案是否合法. 一点细节我注释在代码里了. 代码: #include<cstdio> #include<cstring> ...
- BZOJ_4773_负环_倍增弗洛伊德
BZOJ_4773_负环 Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得 环上的边权和为负数.保证图中不包含重边 ...
随机推荐
- DAY3敏捷冲刺
站立式会议 工作安排 (1)服务器配置 (2)数据库配置 燃尽图 燃尽图有误,已重新修改,先贴卡片的界面,后面补修改后燃尽图 代码提交记录
- lintcode-197-排列序号
197-排列序号 给出一个不含重复数字的排列,求这些数字的所有排列按字典序排序后该排列的编号.其中,编号从1开始. 样例 例如,排列 [1,2,4] 是第 1 个排列. 思路 参考http://www ...
- 原生javascript自定义input[type=checkbox]效果
2018年6月27日 更新 能用css3,就不用js 用纯css3实现样式重写 <!DOCTYPE html> <html lang="en"> < ...
- 硬盘引导扇区、多分区图、不通硬盘的LINUX逻辑分区数量
主要启动记录区(Master Boot Record,MBR):可以安装开机管理程序的地方,有446byte 分割表(Paritition table):记录整块硬盘分割的状态,有64bytes 下面 ...
- html 怎么去掉网页的滚动条
<style type="text/css"> body{ overflow:scroll; overflow-x:hidden; } </style> 这 ...
- SpringMVC的工作流程-005
1.用户发送请求至前端控制器DispatcherServlet 2.DispatcherServlet收到请求调用HandlerMapping处理器映射器. 3. ...
- python dict 字典
字典是通过hash表的原理实现的,每个元素都是一个键值对,通过元素的键计算出一个唯一的哈希值,这个hash值决定了元素的地址,因此为了保证元素地址不一样,必须保证每个元素的键和对应的hash值是完全不 ...
- 好记性不如烂笔头之Maven使用小记
一.前言 说起Maven,是在我上上东家接触的,掌握的还不错,因为种种原因,上家公司没有使用太多大众技术,我也没有太多施展的机会,对于以前掌握的技术,很多都荒废了,最近使用起来发现有点儿吃力了,为了加 ...
- ConcurrentHashMap弱一致性
[原文链接] 本文将用到Java内存模型的happens-before偏序关系(下文将简称为hb)以及ConcurrentHashMap的底层模型相关的知识.happens-before相关内容参见: ...
- 在a标签的href用户#name 的可以实现页面 上下跳转