题目大意:在数组中找出一些数,使它们的和能被n整除

  这题标签是数学,那我就标题就写数论好了...

  显然如果数组中有n的倍数直接取就行。

  那假设数组中没有n的倍数,把数组中的数求前缀和后全部%n,会得到一堆1~n-1的数(注意没有0,有0直接就可以取这个前缀了),那根据抽屉原理一定有两个相同的数,设这两个相同的数所在的位置为l和r,那么下标在[l+1,r]的这些数的和一定是n的倍数

  记得开LL,我还RE两发QAQ

#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
ll n,sum;
ll a[maxn],v[maxn];
void read(ll &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int main()
{
read(n);sum=;
for(int i=;i<=n;i++)
{
read(a[i]);
sum=(sum+a[i])%n;
if(!v[sum])v[sum]=i;
else
{
for(int j=v[sum]+;j<=i;j++)printf("%d %lld\n",j,a[j]);
return ;
}
}
return ;
}

LibreOJ #6220. sum(数论+构造)的更多相关文章

  1. LibreOJ #6220. sum

    二次联通门 : LibreOJ #6220. sum /* LibreOJ #6220. sum 对所有数做一个前缀和 如果某一位模N等于另一位 则他们中间的一段的和一定为N的倍数 自己感悟一下 (M ...

  2. 【LibreOJ】【LOJ】#6220. sum

    [题意]对于n个数,找出一些数使得它们的和能被n整除,输出任意一组方案,n<=10^6. [算法]构造/结论 [题解]引用自:http://www.cnblogs.com/Sakits/p/74 ...

  3. BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

    n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...

  4. Codeforces 716C[数论][构造]

    /* CF傻逼构造题 某人要经过n回合游戏,初始分值是2,等级为1. 每次有两种操作 1.无条件,分值加上自己的等级数. 2.当目前的数字是完全平方数并且该数字开方以后是等级数加1的整数倍,那么可以将 ...

  5. 洛谷P2398 GCD SUM [数论,欧拉筛]

    题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...

  6. Prefix Product Sequence CodeForces - 487C (数论,构造)

    大意: 构造一个[1,2,...n]的排列, 使得前缀积模n为[0,1,...,n-1]的排列 这种构造都好巧妙啊, 大概翻一下官方题解好了 对于所有>=6的合数$n$, 有$(n-1)! \e ...

  7. sgu 137. Funny Strings 线性同余,数论,构造 难度:3

    137. Funny Strings time limit per test: 0.25 sec. memory limit per test: 4096 KB Let's consider a st ...

  8. [bzoj] 1257 余数之和sum || 数论

    原题 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值,其中k mod i表示k除以i的余数. \(\sum^n_{i=1} ...

  9. *P2398 GCD SUM[数论]

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 解析 给出n求sum. gcd(x,y)表示x,y的最大公约数. 直接枚举复杂度为\(O(n^2)\),显然无 ...

随机推荐

  1. Linux命令应用大词典-第39章 网络安全

    39.1 rtacct:网络统计工具 39.2 nmap:报告远程主机特征 39.3 tcpdump:实现网络数据采集分析 39.4 iptstate:显示IP表状态表条目 39.5 nstat:监控 ...

  2. Objective-C 封装 继承 多态

    封装 #import <Foundation/Foundation.h> @interface Person : NSObject { //@public int _age; } - (v ...

  3. 【movable-area、movable-view】 可移动区域组件说明

    movable-area.movable-view 可移动区域组件 原型: <movable-area scale-area="[Boolean]"> <mova ...

  4. 洛谷 P1781 宇宙总统:sort(string)

    题目描述 地球历公元6036年,全宇宙准备竞选一个最贤能的人当总统,共有n个非凡拔尖的人竞选总统,现在票数已经统计完毕,请你算出谁能够当上总统. 输入输出格式 输入格式: 第一行为一个整数n,代表竞选 ...

  5. LeetCode - 136. Single Number - ( C++ ) - 解题报告 - 位运算思路 xor

    1.题目大意 Given an array of integers, every element appears twice except for one. Find that single one. ...

  6. 自测之Lesson3:makefile

    题目:编写一个makefile文件,要求编译当前目录内的所有.c文件. 完成代码: .PHONY:clean all SRC=$(wildcard *.c) BIN=$(SRC:%.c=%) all: ...

  7. ptrdiff_t类型

    一.特性 1. 这是一种标准库类型 2. 是两个指针相减的结果的类型(因为差值可能为负值,所以是一种带符号类型) 3. 和size_t一样,ptrdiff_t也是一种定义在<cstddef> ...

  8. 20162328蔡文琛week09

    学号 2016-2017-2 <程序设计与数据结构>第X周学习总结 教材学习内容总结 数据库是为了其他程序提供数据的应用软件. 关系书就哭通过唯一的标识符在不同表的记录见建立了关系. JD ...

  9. eg_3

    3. 编写一个程序,返回一个 double 类型的二维数组,数组中的元素通过解析字符串参数获得,如字符串参数:“1,2;3,4,5;6,7,8”,则对应的数组为: d[0][0]=1.0, d[0][ ...

  10. 伟大的淘宝IP库的API接口竟然提示503挂掉了

    1 淘宝IP库惊现503错误 吃完晚饭,大概6点半了,天色已暗,太阳早就落山了.回到宿舍打开博客一看,傻眼了:博客每篇文章的评论者的地理信息全部处于“正在查询中……”的状态.这神马情况,不会是被淘宝封 ...