Description

FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C.

Each milking point can "process" at most M (1 <= M <= 15) cows each day.

Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine.

Input

* Line 1: A single line with three space-separated integers: K, C, and M.

* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line.

Output

A single line with a single integer that is the minimum possible total distance for the furthest walking cow.

Sample Input

2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0

Sample Output

2

这个板子有着很多玄学优化  反正特别特别快

题意:k个机器,每个机器最多服务m头牛。

c头牛,每个牛需要1台机器来服务

。告诉你牛与机器每个之间的直接距离。

问:让所有的牛都被服务的情况下,

使走的最远的牛的距离最短,求这个距离。

因为这题求得是最大值得最小值 这个是常见的二分套路

这题行用floyd 跑一个最短路

然后二分枚举长度连边

 #include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
using namespace std;
#define pi acos(-1.0)
#define eps 1e-6
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define bug printf("******")
#define mem(a,b) memset(a,b,sizeof(a))
#define fuck(x) cout<<"["<<x<<"]"<<endl
#define f(a) a*a
#define san(n,m) scanf("%d%d",&n,&m)
#define FIN freopen("in.txt","r",stdin)
#define lowbit(x) x&-x
#pragma comment (linker,"/STACK:102400000,102400000")
using namespace std;
const int maxn = ;
typedef long long LL;
const int MX = ;
const int MXE = * MX * MX;
const LL INFLL = 0x3f3f3f3f3f3f3f3fLL;
const int INF = 0x3f3f3f;
struct MaxFlow {
struct Edge {
int v, nxt;
LL w;
} E[MXE];
int tot, num, s, t;
int head[MX];
void init() {
memset (head, -, sizeof (head) );
tot = ;
}
void add (int u, int v, LL w) {
E[tot] = (Edge) {
v, head[u], w
};
head[u] = tot++;
E[tot] = (Edge) {
u, head[v],
};
head[v] = tot++;
}
int d[MX], vis[MX], gap[MX];
void bfs() {
memset (d, , sizeof (d) );
memset (gap, , sizeof (gap) );
memset (vis, , sizeof (vis) );
queue<int>q;
q.push (t);
vis[t] = ;
while (!q.empty() ) {
int u = q.front();
q.pop();
for (int i = head[u]; ~i; i = E[i].nxt) {
int v = E[i].v;
if (!vis[v]) {
d[v] = d[u] + ;
gap[d[v]]++;
q.push (v);
vis[v] = ;
}
}
}
}
int last[MX];
LL dfs (int u, LL f) {
if (u == t) return f;
LL sap = ;
for (int i = last[u]; ~i; i = E[i].nxt) {
int v = E[i].v;
if (E[i].w > && d[u] == d[v] + ) {
last[u] = i;
LL tmp = dfs (v, min (f - sap, E[i].w) );
E[i].w -= tmp;
E[i ^ ].w += tmp;
sap += tmp;
if (sap == f) return sap;
}
}
if (d[s] >= num) return sap;
if (! (--gap[d[u]]) ) d[s] = num;
++gap[++d[u]];
last[u] = head[u];
return sap;
}
LL solve (int st, int ed, int n) {
LL flow = ;
num = n;
s = st;
t = ed;
bfs();
memcpy (last, head, sizeof (head) );
while (d[s] < num) flow += dfs (s, INFLL);
return flow;
}
} F;
int mp[][];
int k, c, m; int check(int mid) {
F.init();
for (int i = ; i <= k ; i++) {
F.add(, i, m);
for (int j = k + ; j <= k + c ; j++ )
if (mp[i][j] <= mid) F.add(i, j, );
}
for (int i = k + ; i <= k + c ; i++)
F.add(i, k + c + , );
if ((int)(F.solve( , k + c + , k + c + )) == c) return ;
return ;
}
int main() {
while(~scanf("%d%d%d", &k, &c, &m)) {
for (int i = ; i <= k + c ; i++)
for (int j = ; j <= k + c ; j++) {
scanf("%d", &mp[i][j]);
if (i != j && !mp[i][j]) mp[i][j] = INF;
}
int num = k + c;
for(int q = ; q <= num; q++)
for(int i = ; i <= num; i++)
for(int j = ; j <= num; j++)
if(mp[i][j] > mp[i][q] + mp[q][j]) mp[i][j] = mp[i][q] + mp[q][j];
int low = , high = INF, mid, ans = ;
while(low <= high) {
mid = (low + high) >> ;
if (check(mid)) {
ans = mid;
high = mid - ;
} else low = mid + ;
}
printf("%d\n", ans);
}
return ;
}

POJ_2112_Optimal Milking 这里有超级快的网络流板子的更多相关文章

  1. Linux文件系统,ntfs分区显示只读文件系统,提示超级快损坏

    背景:某天当我打开自己的设备,突然发现ntfs分区无法写入任何文件,提示为只读文件系统,具体现象如下: 修复过程:排除权限问题,使用fsck进行修复无果后,使用e2fsck进行修复 显示超级快损坏,这 ...

  2. C++ 加速(卡常)技巧【超级 快读、快写】

    C++ \texttt{C++} C++ 加速技巧 快读快写 快读 inline int read() { int x = 0, w = 0; char ch = 0; while (!isdigit ...

  3. 【bzoj1733】[Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 二分+网络流最大流

    题目描述 Farmer John is constructing a new milking machine and wishes to keep it secret as long as possi ...

  4. uvloop —— 超级快的 Python 异步网络框架

    简短介绍 asyncio是遵循Python标准库的一个异步 I/O框架.在这篇文章里,我将介绍 uvloop: 可以完整替代asyncio事件循环.uvloop是用Cython写的,基于 libuv. ...

  5. [bzoj1733][Usaco2005 feb]Secret Milking Machine 神秘的挤奶机_网络流

    [Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 题目大意:约翰正在制造一台新型的挤奶机,但他不希望别人知道.他希望尽可能久地隐藏这个秘密.他把挤奶机藏在他的农 ...

  6. Pollard_rho定理 大数的因数个数 这个板子超级快

    https://nanti.jisuanke.com/t/A1413 AC代码 #include <cstdio> #include <cstring> #include &l ...

  7. 网络流板子/费用流板子 2018南京I题+2016青岛G题

    2018南京I题: dinic,链式前向星,数组队列,当前弧优化,不memset全部数组,抛弃满流点,bfs只找一条增广路,每次多路增广 #include <bits/stdc++.h> ...

  8. 【COGS 14】 [网络流24题] 搭配飞行员 网络流板子题

    用网络流水二分图的模型(存一下板子) #include <cstdio> #include <cstring> #include <algorithm> #defi ...

  9. 新版本NDK环境结构(避Cygwin,超快)

    曾经做Android的项目要用到NDK就必需要下载NDK,下载安装Cygwin(模拟Linux环境用的),下载CDT(Eclipse C/C++开发插件),还要配置编译器,环境变量... 麻烦到不想说 ...

随机推荐

  1. C语言struct中的长度可变数组(Flexible array member)

    C_struct中的长度可变数组(Flexible array member) Flexible array member is a feature introduced in the C99 sta ...

  2. Python3 小工具-僵尸扫描

    僵尸机的条件: 1.足够闲置,不与其他机器进行通讯 2.IPID必须是递增的,不然无法判断端口是否开放 本实验僵尸机选择的是Windows2003 from scapy.all import * im ...

  3. Java标签实现分页

    Java实现标签分页 最近为了开发一个网站,里面要用分页功能,但是之前很少自己写分页标签,又不想用现成框架.所以自己参考了些资料,写了个分页例子测试了一下. 代码主要分为三个类: PageTag 分页 ...

  4. 四:ResourceManger Restart

    概述: RM是yarn中最重要的组件.但是只有一个RM,因此存在单点失败的问题.RM的重启有两种方式: 1.(Non-work-preserving RM restart) 不保留工作状态的重启   ...

  5. Java之comparable接口

    comparable 接口: 1. 问题:java.util.Collections 类中的方法 Collections.sort(List list) 是根据什么确定容器中对象的“大小”顺序的? 2 ...

  6. MVC4 DropDownList (一) — 使用方法

    1.下面代码包含了三种绑定DropDownList的方法 using System; using System.Collections.Generic; using System.Linq; usin ...

  7. MVC4+EF5 edmx代码分析

    本文分析Entity Framework(EF)从数据库自动生成的模型文件代码(扩展名为edmx). 一. 概述 本文使用的数据库结构尽量简单,只有2个表,一个用户表和一个分公司表(相当于部门表),一 ...

  8. 3ds Max学习日记(八)

      再来更新一波学习进度.   之前玩了一下3dsmax里的灯光,不过由于和教程里的版本不同,教程里的我的没有,我有的教程又没有,所以只能瞎jb玩一玩.   最近又想建个人物模型玩玩,于是上网搜一下有 ...

  9. vim map nmap(转)

    转自:http://blog.csdn.net/taoshengyang/article/details/6319106 有五种映射存在  - 用于普通模式: 输入命令时.  - 用于可视模式: 可视 ...

  10. ubuntu 16.04 安装jdk9错误

    转自:https://askubuntu.com/questions/769467/can-not-install-openjdk-9-jdk-because-it-tries-to-overwrit ...