CF986B Petr and Permutations
题意翻译
Petr要打乱排列。他首先有一个从 111 到 nnn 的顺序排列,然后进行 3n3n3n 次操作,每次选两个数并交换它们。
Alex也要打乱排列。他与Petr唯一的不同是他进行 7n+17n+17n+1 次操作。
给定一个 111 到 nnn 的排列。问是由谁打乱的。如果是Petr,输出"Petr",否则输出"Um_nik"(不是Alex)
感谢@AKEE 提供翻译
题目描述
Petr likes to come up with problems about randomly generated data. This time problem is about random permutation. He decided to generate a random permutation this way: he takes identity permutation of numbers from 1 1 1 to n n n and then 3n 3n 3n times takes a random pair of different elements and swaps them. Alex envies Petr and tries to imitate him in all kind of things. Alex has also come up with a problem about random permutation. He generates a random permutation just like Petr but swaps elements 7n+1 7n+1 7n+1 times instead of 3n 3n 3n times. Because it is more random, OK?!
You somehow get a test from one of these problems and now you want to know from which one.
输入输出格式
输入格式:
In the first line of input there is one integer n n n ( 103≤n≤106 10^{3} \le n \le 10^{6} 103≤n≤106 ).
In the second line there are n n n distinct integers between 1 1 1 and n n n — the permutation of size n n n from the test.
It is guaranteed that all tests except for sample are generated this way: First we choose n n n
— the size of the permutation. Then we randomly choose a method to
generate a permutation — the one of Petr or the one of Alex. Then we
generate a permutation using chosen method.
输出格式:
If the test is generated via Petr's method print "Petr"
(without quotes). If the test is generated via Alex's method print
"Um_nik" (without quotes).
输入输出样例
5
2 4 5 1 3
Petr
说明
Please note that the sample is not a valid test (because of limitations for n n n ) and is given only to illustrate input/output format. Your program still has to print correct answer to this test to get AC.
Due to randomness of input hacks in this problem are forbidden.
Solution:
本题思路贼有意思。
开始题意没理解,所以简述下题意:给你一个$1——n$的排列,它是由初始为从$1——n$的序列每次交换任意两位得到的,然后A进行了$3n$次操作,$B$进行了$7n+1$次操作,要你判断这个排列是谁操作出来的。
不难发现$3n$和$7n+1$奇偶性一定互异(显然),然后有一个很重要的性质,那就是排列中逆序数的奇偶性和操作的奇偶性相同,证明:1、首先每次若交换相邻的两位,则必然使得逆序数$+1$或$-1$; 2、任意交换两位,可以理解为先将后面的一个向前移动$k$位,再将前面要移的一位向后移$k-1$位,注意到共移动了$2k-1$次,所以移动一次逆序对变化数量为奇数,那么奇数次移动逆序对数就是奇数,偶数次移动逆序对数就是偶数了。
于是我们直接树状数组求下逆序数,然后判断一下就好了。
代码:
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=1e6+;
int t[N+],a[N],n;
bool f; il int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+x-,x=getchar();
return a;
} il void update(int k){while(k<=n)t[k]++,k+=k&-k;} il int query(int k){int sum=;while(k)sum+=t[k],k-=k&-k;return sum;} int main(){
n=gi();
For(i,,n) a[i]=gi();
Bor(i,,n) {
f^=(query(a[i]-)&);
update(a[i]);
}
if(n&) f?puts("Petr"):puts("Um_nik");
else f?puts("Um_nik"):puts("Petr");
return ;
}
CF986B Petr and Permutations的更多相关文章
- CF986B Petr and Permutations [逆序对]
题目传送门 Petr and Permutations 格式难调,题面就不放了. 分析: 胡乱分析+猜测SP性质一波.然后被学长告知:“1~n的排列交换次数与逆序对的奇偶性相同.”然后就愉快地A了. ...
- CF986B Petr and Permutations 思维
每次交换:逆序对的数量+1或者-1: 假设最后逆序对数量为 sum; ①x+y=3n; ②x-y=sum; -> 3n+sum为偶数: 所以 n 和 sum 必须奇偶一样: #include&l ...
- Codeforces Round #485 (Div. 2) E. Petr and Permutations
Codeforces Round #485 (Div. 2) E. Petr and Permutations 题目连接: http://codeforces.com/contest/987/prob ...
- Codeforces 987E Petr and Permutations(数组的置换与复原 、结论)
题目连接: Petr and Permutations 题意:给出一个1到n的序列,Petr打乱了3n次,Um_nik打乱了7n+1次,现在给出被打乱后的序列,求是谁打乱的. 题解:因为给出了一个3* ...
- Petr and Permutations CodeForces - 987E(逆序对)
题意: 给出一个长度为n的序列,求出是谁操作的(原序列为从小到大的序列),Peter的操作次数为3n,Alex的操作次数为7n+1 解析: 我们来看这个序列中的逆序对,逆序对的个数为偶数则操作次数为偶 ...
- CodeForces - 987E Petr and Permutations (思维+逆序对)
题意:初始有一个序列[1,2,...N],一次操作可以将任意两个位置的值互换,Petr做3*n次操作:Alxe做7*n+1次操作.给出最后生成的新序列,问是由谁操作得到的. 分析:一个序列的状态可以归 ...
- 【Codeforces 986B】Petr and Permutations
[链接] 我是链接,点我呀:) [题意] 题意 [题解] n为奇数时3n和7n+1奇偶性不同 n为偶数时也是如此 然后交换任意一对数 逆序对的对数的奇偶性会发生改变一次 求出逆序对 对n讨论得出答案. ...
- Codeforces 986B. Petr and Permutations(没想到这道2250分的题这么简单,早知道就先做了)
这题真的只能靠直觉了,我没法给出详细证明. 解题思路: 1.交换3n次或者7n+1次,一定会出现一个为奇数,另一个为偶数. 2.用最朴素的方法,将n个数字归位,计算交换次数. 3.判断交换次数是否与3 ...
- Codeforces 986B - Petr and Permutations
Description\text{Description}Description Given an array a[], swap random 2 number of them for 3n or ...
随机推荐
- 北京Uber优步司机奖励政策(12月8日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- RabbitMQ基础教程之使用进阶篇
RabbitMQ基础教程之使用进阶篇 相关博文,推荐查看: RabbitMq基础教程之安装与测试 RabbitMq基础教程之基本概念 RabbitMQ基础教程之基本使用篇 I. 背景 前一篇基本使用篇 ...
- php常用几个数组的区别
本文主要介绍的php数组函数主要有:sort.rsort.asort.arsort.ksort.krsort 测试数据定义一个关联数组如下: $data=[ 'f'=>123, 'b'=> ...
- idea前端页面不刷新----springboot
修改这里就好了
- SpringMVC+mybatis+maven+Ehcache缓存实现
所谓缓存,就是将程序或系统经常要调用的对象存在内存中,以便其使用时可以快速调用,不必再去创建新的重复的实例.这样做可以减少系统开销,提高系统效率. 缓存主要可分为二大类: 一.通过文件缓存,顾名思义文 ...
- 子序列 (All in All,UVa10340)
题目描述:算法竞赛入门经典习题3-9 题目思路:循环匹配 //没有按照原题的输入输出 #include <stdio.h> #include <string.h> #defin ...
- 【转】: 《江湖X》开发笔谈 - 热更新框架
前言 大家好,我们这期继续借着我们工作室正在运营的在线游戏<江湖X>来谈一下热更新机制以及我们的理解和解决方案.这里先简单的介绍一下热更新的概念,熟悉这部分的朋友可以跳过,直接看我们的方案 ...
- HDU 3062 Party(2-SAT模版题)
Problem Description 有n对夫妻被邀请参加一个聚会,因为场地的问题,每对夫妻中只有1人可以列席.在2n 个人中,某些人之间有着很大的矛盾(当然夫妻之间是没有矛盾的),有矛盾的2个人是 ...
- JS判断备忘
快速引入jquery并显示重点内容 (function(d,j,s,t){t=d.body.appendChild(d.createElement("script"));t.onl ...
- “Hello World!”团队第三周召开的第五次会议
一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.代码地址 一.会议时间 2017年10月31日 11:45-12:17 二.会议地点: ...