【bzoj1705】[Usaco2007 Nov]Telephone Wire 架设电话线 dp
题目描述
最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线。 新的电话线架设在已有的N(2 <= N <= 100,000)根电话线杆上, 第i根电话线杆的高度为height_i米(1 <= height_i <= 100)。 电话线总是从一根电话线杆的顶端被引到相邻的那根的顶端 如果这两根电话线杆的高度不同,那么FJ就必须为此支付 C*电话线杆高度差(1 <= C <= 100)的费用。当然,你不能移动电话线杆, 只能按原有的顺序在相邻杆间架设电话线。Farmer John认为 加高某些电话线杆能减少架设电话线的总花费,尽管这项工作也需要支出一定的费用。 更准确地,如果他把一根电话线杆加高X米的话,他得为此付出X^2的费用。 请你帮Farmer John计算一下,如果合理地进行这两种工作,他最少要在这个电话线改造工程上花多少钱。
输入
第1行: 2个用空格隔开的整数:N和C
第2..N+1行: 第i+1行仅有一个整数:height_i
输出
第1行: 输出Farmer John完成电话线改造工程所需要的最小花费
样例输入
5 2
2
3
5
1
4
样例输出
15
题解
dp+优化
每个电线杆加高之后的最高高度肯定不超过高度最大值maxh,这是显然的。
首先有最基本的思路:
f[i][j]表示第i个柱子高度为j时的最小花费。
那么就有f[i][j]=(j-h[i])2+min(f[i-1][k]+c*abs(k-j)),k<=maxh
这样时间复杂度是O(nh2),会超时,肯定要优化。
怎么优化呢?可以把绝对值拆开,于是状态转移方程变为
f[i][j]=(j-h[i])2+min(f[i-1][k]-c*k)+c*j,k<=j
(j-h[i])2+min(f[i-1][k]+c*k)-c*j,k>=j
那么我们只要分别维护f[i-1][k]-c*k,k<=j和f[i-1][k]+c*k,k>=j的最小值即可,可以递推求出。
设min1[i][j]为k<=j时f[i][k]-c*k的最小值,min2[i][j]为k>=j时f[i][k]+c*k的最小值。
那么就有min1[i][j]=min(min1[i][j-1],f[i][j]-c*j)
min2[i][j]=min(min2[i][j+1],f[i][j]+c*j)
以及f[i][j]=(j-h[i])2+min(min1[i-1][j]+c*j,min2[i-1][j]-c*j)。
注意公式中有的是i有的是i-1,不要弄混。
于是时间复杂度被优化到了O(nh),解决了时间问题。
然而题目空间要求是64MB,这样开二维数组会MLE。
所以我使用了滚动数组黑科技,应该不难理解,注意细节。
听说少开一个二维数组好像也能过,没试过,反正滚动数组应该是最好的做法了吧。
还有柱子高度不能降低,所以注意一下循环起始点和终止点。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int f[102] , h[100002] , min1[102] , min2[102];
int main()
{
int n , c , m = 0 , i , j , ans = 0x3f3f3f3f;
scanf("%d%d" , &n , &c);
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &h[i]) , m = max(m , h[i]);
memset(f , 0x3f , sizeof(f));
for(i = h[1] ; i <= m ; i ++ )
f[i] = (i - h[1]) * (i - h[1]);
for(i = 2 ; i <= n ; i ++ )
{
memset(min1 , 0x3f , sizeof(min1));
memset(min2 , 0x3f , sizeof(min2));
for(j = h[i - 1] ; j <= m ; j ++ )
min1[j] = min(min1[j - 1] , f[j] - c * j);
for(j = m ; j >= 1 ; j -- )
min2[j] = min(min2[j + 1] , j >= h[i - 1] ? f[j] + c * j : 0x3f3f3f3f);
for(j = h[i] ; j <= m ; j ++ )
f[j] = (j - h[i]) * (j - h[i]) + min(min1[j] + c * j , min2[j] - c * j);
}
for(i = h[n] ; i <= m ; i ++ )
ans = min(ans , f[i]);
printf("%d\n" , ans);
return 0;
}
【bzoj1705】[Usaco2007 Nov]Telephone Wire 架设电话线 dp的更多相关文章
- bzoj1705[Usaco2007 Nov]Telephone Wire 架设电话线(dp优化)
1705: [Usaco2007 Nov]Telephone Wire 架设电话线 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 441 Solved: ...
- 【动态规划】bzoj1705: [Usaco2007 Nov]Telephone Wire 架设电话线
可能是一类dp的通用优化 Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设 ...
- bzoj 1705: [Usaco2007 Nov]Telephone Wire 架设电话线——dp
Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设在已有的N(2 <= ...
- BZOJ 1705: [Usaco2007 Nov]Telephone Wire 架设电话线 DP + 优化 + 推导
Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设在已有的N(2 <= ...
- [bzoj1705] [Usaco2007 Nov]Telephone Wire 架设电话线
正常DP.. f[i][j]表示前i个电线杆,把第i个电线杆高度改为j的最少总费用.设原来电线杆高度为h[] f[i][j]=min{ f[i-1][k]+C*|j-k|+(j-h[i])^2,(k& ...
- BZOJ_1705_[Usaco2007 Nov]Telephone Wire 架设电话线_DP
BZOJ_1705_[Usaco2007 Nov]Telephone Wire 架设电话线_DP Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是 ...
- DP+滚动数组 || [Usaco2007 Nov]Telephone Wire 架设电话线 || BZOJ 1705 || Luogu P2885
本来是懒得写题解的…想想还是要勤发题解和学习笔记…然后就滚过来写题解了. 题面:[USACO07NOV]电话线Telephone Wire 题解: F[ i ][ j ] 表示前 i 根电线杆,第 i ...
- 【BZOJ】1705: [Usaco2007 Nov]Telephone Wire 架设电话线
[题意]给定一排n根杆高度hi,一个常数C,杆升高x的代价为x^2,相邻两杆之间架设电话线代价为高度差*C,求总代价最小. [算法]DP+辅助数组优化 [题解]令f[i][j]表示第i根杆高度为j的最 ...
- bzoj 1705;poj 3612:[Usaco2007 Nov]Telephone Wire 架设电话线
Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设在已有的N(2 <= ...
随机推荐
- typescript语法
先来讲一讲TypeScript出现的背景 前端javascript的编程思想与后端java面向对象的编程思想有很大的不同,微软公司借鉴了coffeescript语言,继承了很多C#和java的编程思想 ...
- == vs === in Javascript
本文来自网易云社区 作者:魏文庆 如果你只想知道==与===的区别,请直接看总结,当然我更希望您能耐心看完全文.Javascript中用于相等比较的操作符有两个==和===.==我们通常称为" ...
- HardcodedDebugMode
xmlns:tools="http://schemas.android.com/tools" tools:ignore="HardcodedDebugMode"
- Python 多线程、进程、协程上手体验
浅谈 Python 多线程.进程.协程上手体验 前言:浅谈 Python 很多人都认为 Python 的多线程是垃圾(GIL 说这锅甩不掉啊~):本章节主要给你体验下 Python 的两个库 Thre ...
- SSH:远程登陆
SSH用于计算机之间的加密登录的前提是公钥为真,所以存在中间人攻击中间人攻击:与https协议不同,SSH协议的公钥是没有CA公证的,当对公钥的请求被中间截获时,中间人可以发出伪造公钥干坏事而不被识破 ...
- docker学习2
今天继续学习docker! 搜索镜像 docker search centos 下载镜像 docker pull name(镜像名字) 查看镜像docker images 字段含义分析: TAG:仓库 ...
- Wordcount -- MapReduce example -- Mapper
Mapper maps input key/value pairs into intermediate key/value pairs. E.g. Input: (docID, doc) Output ...
- php多进程单例模式下的 MySQL及Redis连接错误修复
前几天写了个php常驻脚本,主要逻辑如下 //跑完数据后休息60秒 $sleepTime = 60; $maxWorker = 10; while (true) { $htmlModel = new ...
- Caching Data in the Architecture (C#)
http://www.asp.net/web-forms/tutorials/data-access/caching-data/caching-data-in-the-architecture-cs ...
- leetcode个人题解——#15 3sums
class Solution { public: vector<vector<int>> threeSum(vector<int>& nums) { sor ...