题目描述

小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km。 作为公交车线路的规划者,小Z调查了市民的需求,决定按下述规则设计线路:
1.设共K辆公交车,则1到K号站作为始发站,N-K+1到N号台作为终点站。
2.每个车站必须被一辆且仅一辆公交车经过(始发站和终点站也算被经过)。 
3.公交车只能从编号较小的站台驶往编号较大的站台。 
4.一辆公交车经过的相邻两个
站台间距离不得超过Pkm。 在最终设计线路之前,小Z想知道有多少种满足要求的方案。由于答案可能很大,你只需求出答案对30031取模的结果。

输入

仅一行包含三个正整数N K P,分别表示公交车站数,公交车数,相邻站台的距离限制。
N<=10^9,1<P<=10,K<N,1<K<=P

输出

仅包含一个整数,表示满足要求的方案数对30031取模的结果。

样例输入

样例一:10 3 3
样例二:5 2 3
样例三:10 2 4

样例输出

1
3
81


题解

状压dp+矩阵乘法

很容易想到以当前枚举位置下每辆车最后的出现位置为状态,即 $f[i][j]$ 表示 $i$ 个位置,每辆车最后的出现位置状态为 $j$ 的方案数。

那么考虑转移:如果某个车的位置是从左到右 $p$ 个中的第 $1$ 个,则必须移动这辆车;否则可以移动任意一辆车。

但是这样状态难以存下($A_p^k$)

仔细思考可以发现,每辆车都是一样的,因此没有顺序之分,状态数从排列变为了组合($C_p^k$),最多只有 $C_{10}^5=252$ 。

而且进一步可以通过dp的意义得到:状态中一定有一辆车在最后一个位置。因此最多只有 $C_9^4=126$ 。

按照这个思路容易想到矩阵乘法。

设二进制状态表示从左到右的 $p$ 个位置中,哪些位置是 $k$ 辆车的最后出现的位置。

那么初始状态和结束状态都可以看成前 $p-k$ 个位置为空,后 $k$ 个位置全有车。显然需要转移 $n-k$ 次。

因此首先预处理状态和转移,然后直接求矩阵的 $n-k$ 次方计算即可。

时间复杂度 $O((C_{p-1}^{k-1})^3\log n)$

#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 30031
using namespace std;
int c[1030] , w[1030] , v[130] , n;
struct data
{
int v[130][130];
data() {memset(v , 0 , sizeof(v));}
int *operator[](int a) {return v[a];}
data operator*(data &a)
{
data ans;
int i , j , k;
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
for(k = 1 ; k <= n ; k ++ )
ans[i][j] = (ans[i][j] + v[i][k] * a[k][j]) % mod;
return ans;
}
}A;
data pow(data x , int y)
{
data ans;
int i;
for(i = 1 ; i <= n ; i ++ ) ans[i][i] = 1;
while(y)
{
if(y & 1) ans = ans * x;
x = x * x , y >>= 1;
}
return ans;
}
int main()
{
int m , k , p , i , j;
scanf("%d%d%d" , &m , &k , &p);
for(i = 1 ; i < (1 << p) ; i ++ )
{
c[i] = c[i - (i & -i)] + 1;
if(c[i] == k && i & (1 << (p - 1))) w[i] = ++n , v[n] = i;
}
for(i = 1 ; i <= n ; i ++ )
{
if(v[i] & 1) A[i][w[(1 << (p - 1)) | (v[i] >> 1)]] = 1;
else
for(j = 0 ; j < p ; j ++ )
if(v[i] & (1 << j))
A[i][w[(1 << (p - 1)) | ((v[i] ^ (1 << j)) >> 1)]] = 1;
}
A = pow(A , m - k);
i = w[(1 << p) - (1 << (p - k))];
printf("%d\n" , A[i][i]);
return 0;
}

【bzoj2004】[Hnoi2010]Bus 公交线路 状压dp+矩阵乘法的更多相关文章

  1. BZOJ2004:[HNOI2010]Bus 公交线路(状压DP,矩阵乘法)

    Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定 ...

  2. [Bzoj2004][Hnoi2010]Bus 公交线路(状压dp&&矩阵加速)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2004 看了很多大佬的博客才理解了这道题,菜到安详QAQ 在不考虑优化的情况下,先推$dp ...

  3. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  4. 『公交线路 状压dp 矩阵乘法加速』

    公交线路 Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的 ...

  5. 【BZOJ2004】[Hnoi2010]Bus 公交线路 状压+矩阵乘法

    [BZOJ2004][Hnoi2010]Bus 公交线路 Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1 ...

  6. BZOJ 2004 公交线路(状压DP+矩阵快速幂)

    注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include ...

  7. BZOJ2004: [Hnoi2010]Bus 公交线路

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2004 状压dp+矩阵乘法. f[i][s]表示从第i位至前面的i-k位,第i位必须取的状态. ...

  8. bzoj2004 [Hnoi2010]Bus 公交线路 矩阵快速幂+状压DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2004 题解 如果 \(N\) 没有那么大,考虑把每一位分配给每一辆车. 假设已经分配到了第 \ ...

  9. [BZOJ 2004] [Hnoi2010] Bus 公交线路 【状压DP + 矩阵乘法】

    题目链接: BZOJ - 2004 题目分析 看到题目完全不会..于是立即看神犇们的题解. 由于 p<=10 ,所以想到是使用状压.将每个连续的 p 个位置压缩成一个 p 位 2 进制数,其中共 ...

随机推荐

  1. 20145234黄斐《Java程序设计》第七周学习总结

    教材学习内容总结 Lambda语法 Lambda去可以重复,符合DRY原则,而且Lambda表达式可读性更好,操作更简单 匿名类型最大的问题就在于其冗余的语法,lambda表达式是匿名方法,它提供了轻 ...

  2. html中iframe根据子页面内容动态修改高度

    JavaScript var browserVersion = window.navigator.userAgent.toUpperCase(); var isOpera = browserVersi ...

  3. 《C++ Primer》第II部分:C++标准库

    <C++ Primer>第II部分:C++标准库 前言 把<C++ Primer>读薄系列笔记.本篇为第II部分C++标准库,包含全书第8-12章重难点: IO库 顺序容器 范 ...

  4. logback.xml日志文件配置

    放在resources目录下面就可以自动读取<?xml version="1.0" encoding="UTF-8"?> <configura ...

  5. 创龙DSP6748开发板LED闪烁-第一篇

    1. 首先看下DSP6748的GPIO寄存器的文档,先看下框图,有这个框图,一目了然,输入和输出很清楚 2. 看下寄存器部分,对应上面的图,问题在于,DSP6748有多少个GPIO?最多144个,下一 ...

  6. 纯净CentOS安装PHP网站环境

    一.MySQL数据库 安装mysql: yum install mysql mysql-server 启动mysql: /etc/init.d/mysqld start 或  service mysq ...

  7. PS 放大眼睛

    1.打开图片,Ctrl+J 复制一个 2.选择工具栏的滤镜--液化 然后选择膨胀工具--设置画笔属性

  8. 第二章 IP协议详解

    第二章 IP协议详解 2.1 IP服务的特点 它为上层协议提供了无状态,无连接,不可靠的服务 名称 简介 优点 缺点 对付缺点的方法 无状态 IP通信双方不同步传输数据的状态信息 无须为保持通信的状态 ...

  9. node事件循环

    Node.js 是单进程单线程应用程序,但是通过事件和回调支持并发,所以性能非常高. Node.js 的每一个 API 都是异步的,并作为一个独立线程运行,使用异步函数调用,并处理并发. Node.j ...

  10. Java Web开发框架Spring+Hibernate整合效果介绍(附源码)(已过期,有更好的)

    最近花了一些时间整合了一个SpringMVC+springAOP+spring security+Hibernate的一套框架,之前只专注于.NET的软件架构设计,并没有接触过Java EE,好在有经 ...