http://www.lydsy.com/JudgeOnline/problem.php?id=1087

Description

  在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

  只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

  方案数。

Sample Input

3 2

Sample Output

16

——————————————————————————————

n很小,暴力太麻烦,考虑状压。

设f[i][j][k]表示前i行放j个国王且第i行排成k情况的时候的情况数有多少。

g[i]表示一行国王排成i情况的时候有几个国王。

转移的时候显然是f[i][j][k]+=f[i-1][j-g[k]][l]

其中保证l合法,并且j最小值为g[k]+g[l]。

于是得到算法构架:

枚举i,枚举k,判断k的合法性,枚举l,判断l的合法性,枚举j,计算。

Q1:g怎么算?

A1:求g[i],我们可以通过将i右移,然后判断i最后一位为0还为1,所以答案为:g[i]=g[i>>1]+(i&1);

Q2:如何判断状态合法?

A2:我们判断相邻行i和j状态之间是否合法,首先判断i和j本身是否合法——通过将本身左移,再和原状态&一下,如果不为0就一定撞上了。

再考虑i和j,同样的思路,将j左/右移和i&(当然反过来也可以),如果不为0就一定撞上了。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
const int N=;
const int INF=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int g[N];
ll ans,f[][][N];
int main(){
int n,m;
scanf("%d%d",&n,&m);
if(m>||m>=n*n)puts("");
else{
int t=<<n;f[][][]=;
for(int i=;i<t;i++)g[i]=g[i>>]+(i&);
for(int i=;i<=n;i++){
for(int j=;j<t;j++){
if(g[j]<=m&&!(j&j>>)){
for(int k=;k<t;k++){
if(g[k]<=m&&!(k&k>>)&&!(k&j)&&!(j&k>>)&&!(j&k<<)){
for(int l=g[j]+g[k];l<=m;l++){
f[i][l][j]+=f[i-][l-g[j]][k];
}
}
}
}
}
}
for(int i=;i<t;i++)ans+=f[n][m][i];
printf("%lld\n",ans);
}
return ;
}

BZOJ1087:[SCOI2005]互不侵犯——题解的更多相关文章

  1. BZOJ1087 SCOI2005 互不侵犯King 【状压DP】

    BZOJ1087 SCOI2005 互不侵犯King Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附 ...

  2. 状压入门--bzoj1087: [SCOI2005]互不侵犯King【状压dp】

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行, ...

  3. [bzoj1087][scoi2005]互不侵犯king

    题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. 思路 首先,搜索可以放弃,因为这是一 ...

  4. BZOJ1087 [SCOI2005]互不侵犯King 状态压缩动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1087 题意概括 在n*n的棋盘上面放k个国王,使得他们互相无法攻击,问有多少种摆法. 题解 dp[ ...

  5. bzoj1087: [SCOI2005]互不侵犯King (codevs2451) 状压dp

    唔...今天学了状压就练练手... 点我看题 这题的话,我感觉算是入门题了QAQ... 然而我还是想了好久... 大致自己推出了方程,但是一直挂,调了很久选择了题解 坚持不懈的努力的调代码. 然后发现 ...

  6. [BZOJ1087][SCOI2005]互不侵犯King解题报告|状压DP

    在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 好像若干月前非常Naive地去写过DFS... ...

  7. bzoj1087 [SCOI2005]互不侵犯

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  8. [BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  9. BZOJ1087[SCOI2005]互不侵犯——状压DP

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入 只有一行,包含两个数N,K ( ...

随机推荐

  1. Mac brew安装redis

    1.安装redis $ brew install redis Error:Failed to download resource "reds"  // 下载reds失败 不过不需要 ...

  2. linux 解压命令大全[转]

    本文转自:  http://www.cnblogs.com/eoiioe/archive/2008/09/20/1294681.html .tar 解包:tar xvf FileName.tar打包: ...

  3. Date 工具类(包含常用的一些时间方法)

    package com.fh.util; import java.sql.Timestamp; import java.text.DateFormat; import java.text.ParseE ...

  4. DEDEcms调用当前栏目顶级栏目url地址

    include/common.func.php 找到这个文件 在文件最下方加入以下代码: //获取顶级栏目url function GetTopTypeurl($id) { global $dsql; ...

  5. idea前端页面不刷新----springboot

    修改这里就好了

  6. JavaScriptSerializer的实现-常用JsonHelper类

    最近开始自己写自己的项目了,终于鼓起勇气迈出了自己认为的这一大步! 先来通用的helper类和大家分享一下 ,第一个是Object转为json序列的类,这个网上有很多,但我实践了一下大部分都不能用的, ...

  7. 搭建备份到业务迁移---mysql

    mysql安装启动以及配置 使用到阿里云主机直接yum安装以及配置 [root@yunwei-169 mysql]# yum install mysql mysql-server [root@yunw ...

  8. 11.24Daily Scrum(3)

    人员 任务分配完成情况 明天任务分配 王皓南 实现网页上视频浏览的功能.研究相关的代码和功能.1002 数据库测试 申开亮 实现网页上视频浏览的功能.研究相关的代码和功能.1003 实现视频浏览的功能 ...

  9. Acm hust 1.25

    闲着无聊做了点hust上 acm的训练题 A题 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=104738#problem/A 看了20分 ...

  10. opencart

    1. Deleting english language, what happens?   Disable English tab , category and products     1) Fir ...