http://www.lydsy.com/JudgeOnline/problem.php?id=1087

Description

  在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

  只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

  方案数。

Sample Input

3 2

Sample Output

16

——————————————————————————————

n很小,暴力太麻烦,考虑状压。

设f[i][j][k]表示前i行放j个国王且第i行排成k情况的时候的情况数有多少。

g[i]表示一行国王排成i情况的时候有几个国王。

转移的时候显然是f[i][j][k]+=f[i-1][j-g[k]][l]

其中保证l合法,并且j最小值为g[k]+g[l]。

于是得到算法构架:

枚举i,枚举k,判断k的合法性,枚举l,判断l的合法性,枚举j,计算。

Q1:g怎么算?

A1:求g[i],我们可以通过将i右移,然后判断i最后一位为0还为1,所以答案为:g[i]=g[i>>1]+(i&1);

Q2:如何判断状态合法?

A2:我们判断相邻行i和j状态之间是否合法,首先判断i和j本身是否合法——通过将本身左移,再和原状态&一下,如果不为0就一定撞上了。

再考虑i和j,同样的思路,将j左/右移和i&(当然反过来也可以),如果不为0就一定撞上了。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
const int N=;
const int INF=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int g[N];
ll ans,f[][][N];
int main(){
int n,m;
scanf("%d%d",&n,&m);
if(m>||m>=n*n)puts("");
else{
int t=<<n;f[][][]=;
for(int i=;i<t;i++)g[i]=g[i>>]+(i&);
for(int i=;i<=n;i++){
for(int j=;j<t;j++){
if(g[j]<=m&&!(j&j>>)){
for(int k=;k<t;k++){
if(g[k]<=m&&!(k&k>>)&&!(k&j)&&!(j&k>>)&&!(j&k<<)){
for(int l=g[j]+g[k];l<=m;l++){
f[i][l][j]+=f[i-][l-g[j]][k];
}
}
}
}
}
}
for(int i=;i<t;i++)ans+=f[n][m][i];
printf("%lld\n",ans);
}
return ;
}

BZOJ1087:[SCOI2005]互不侵犯——题解的更多相关文章

  1. BZOJ1087 SCOI2005 互不侵犯King 【状压DP】

    BZOJ1087 SCOI2005 互不侵犯King Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附 ...

  2. 状压入门--bzoj1087: [SCOI2005]互不侵犯King【状压dp】

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行, ...

  3. [bzoj1087][scoi2005]互不侵犯king

    题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. 思路 首先,搜索可以放弃,因为这是一 ...

  4. BZOJ1087 [SCOI2005]互不侵犯King 状态压缩动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1087 题意概括 在n*n的棋盘上面放k个国王,使得他们互相无法攻击,问有多少种摆法. 题解 dp[ ...

  5. bzoj1087: [SCOI2005]互不侵犯King (codevs2451) 状压dp

    唔...今天学了状压就练练手... 点我看题 这题的话,我感觉算是入门题了QAQ... 然而我还是想了好久... 大致自己推出了方程,但是一直挂,调了很久选择了题解 坚持不懈的努力的调代码. 然后发现 ...

  6. [BZOJ1087][SCOI2005]互不侵犯King解题报告|状压DP

    在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 好像若干月前非常Naive地去写过DFS... ...

  7. bzoj1087 [SCOI2005]互不侵犯

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  8. [BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  9. BZOJ1087[SCOI2005]互不侵犯——状压DP

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入 只有一行,包含两个数N,K ( ...

随机推荐

  1. package.json中的devDependencies和dependencies有啥区别?

    如果你的项目是发布到npm的一个包, 那么这个包的package.json中的dependencies中的依赖是会被下载下来到这个包的node_modules文件夹中的(如果你的项目本身没有这个依赖) ...

  2. 模拟实现MyBatis中通过SQL反射实体类对象功能

    话不多说,直接上干货! package cn.test; import java.lang.reflect.Method; import java.sql.Connection; import jav ...

  3. OSG-HUD

    本文转至http://www.cnblogs.com/shapherd/archive/2010/08/10/osg.html 作者写的比较好,再次收藏,希望更多的人可以看到这个文章 互联网是是一个相 ...

  4. 【SpringCloud】第七篇: 高可用的分布式配置中心(Spring Cloud Config)

    前言: 必需学会SpringBoot基础知识 简介: spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选. ...

  5. labview--http协议数据交互

    最近接了一个项目,需求是要将采集到的数据,以以下要求上报,并且提供接口供上层系统下发指令. 采用restful的http协议进行交互: 输入输出参数皆为json体. 响应包含三部分: Code:业务码 ...

  6. Quartz定时器原理与使用

    Quartz是OpenSymphony开源组织在Job scheduling领域又一个开源项目,是一个完全由java编写的开源作业调度框架. Quartz可以用来创建简单或为运行十个,百个,甚至是好几 ...

  7. ubuntu server guide 学习笔记

    1. 软件包 1.1. dpkg dpkg -l dpkg -l | grep apache2 dpkg -L ufw dpkg -S /etc/host.conf dpkg -i zip_3.0-4 ...

  8. 机器学习之支持向量机(Support Vector Machine)

    转载请注明出处:http://www.cnblogs.com/Peyton-Li/ 支持向量机 支持向量机(support vector machines,SVMs)是一种二类分类模型.它的基本模型是 ...

  9. Using APIs in Your Ethereum Smart Contract with Oraclize

    Homepage Coinmonks HOMEFILTER ▼BLOCKCHAIN TUTORIALSCRYPTO ECONOMYTOP READSCONTRIBUTEFORUM & JOBS ...

  10. URAL 1297 Palindrome(Manacher)

    The “U.S. Robots” HQ has just received a rather alarming anonymous letter. It states that the agent ...