可以看出这是个多重背包,运用单调队列优化可以使每次询问达到O(s).这样总复杂度为O(s*tot). 会TLE。

因为改题的特殊性,每个硬币的币值是不变的,变的只是每次询问的硬币个数。

我们不妨不考虑硬币个数的限制。这样可以用完全背包在O(s)的时间求出dp[]数组,表示没有限制的种数。

现在加入每个硬币的限制后,由于容斥原理,答案就是没有限制的种数-第一个硬币的限制种数-第二个硬币限制种数......

如果加入第一个硬币的限制后怎么求呢。就相当于你先把第一个硬币用到刚超过限制,剩下的随便怎么选。此时的种数就是dp[s-(d[1]+1)*c[1]],d[1]表示第一种硬币的限制数,

c[1]表示第一种硬币的币值。 剩下的同理。

之后所以的询问都可以在O(1)的时间求出。

因此总复杂度为O(s+tot).

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... LL dp[N];
int c[], d[]; void init()
{
dp[]=;
FO(i,,) FO(j,c[i],N) dp[j]=dp[j]+dp[j-c[i]];
}
int main ()
{
scanf("%d%d%d%d%d",c,c+,c+,c+,c+);
init();
while (c[]--) {
scanf("%d%d%d%d%d",d,d+,d+,d+,d+);
LL ans=dp[d[]];
FO(i,,) {
int tot=, tmp=;
FO(j,,) if (i&(<<j)) ++tot, tmp+=(d[j]+)*c[j];
if (tmp<=d[]) ans+=((tot&)?-dp[d[]-tmp]:dp[d[]-tmp]);
}
printf("%lld\n",ans);
}
return ;
}

BZOJ 1042 硬币购物(背包DP+容斥原理)的更多相关文章

  1. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  2. 【bzoj1042】[HAOI2008]硬币购物 背包dp+容斥原理

    题解: 计数题 首先考虑容斥 这题很明显加了限制状态就很多 考虑没有限制 显然可以直接dp 然后 我们看一下 容斥 某一个使用>=k张 那么其实就是 f[i-k*c[]] 于是这样就可以做了

  3. 【BZOJ】1042: [HAOI2008]硬币购物(dp+容斥原理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1042 一开始写了个O(nv)的背包,果断tle... 看了题解,,好神..用了组合数学中的多重集合方 ...

  4. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  5. [BZOJ]1042 硬币购物(HAOI2008)

    失踪OJ回归. 小C通过这道题mark一下容斥一类的问题. Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s ...

  6. BZOJ 1042 硬币购物(完全背包+DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1042 题意:给出四种面值的硬币c1,c2,c3,c4.n个询问.每次询问用d1.d2.d ...

  7. BZOJ 1042 硬币购物

    先不考虑限制,那么有dp[i]表示i元钱的方案数. 然后考虑限制,发现可以容斥. 其实整个题就是两个容斥原理.感觉出的蛮好的. #include<iostream> #include< ...

  8. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

  9. [bzoj 1042][HAOI2008]硬币购物(用容斥原理弄背包)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1042 分析: 解法很巧妙,用f[i]表示四种硬币A.B.C.D的数量不考虑的情况下弄成 ...

随机推荐

  1. 如何在同一个Excel里,对两个很相似的工作簿比对出不同之处

    如何在同一个Excel里,对两个很相似的工作簿比对出不同之处

  2. Milking Order

    Milking Order 题意:给出m个描述状态,其中包含若干个边的关系,问最多能取x (x<=m)个状态,使得形成的图没有环.就是说取x个状态,用状态中的关系建边,其中不能有环. 题解:最大 ...

  3. 北京Uber优步司机奖励政策(2月26日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. 广州Uber优步司机奖励政策(1月4日~1月10日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  5. [python]安装wxpython的时候遇到问题记录

    一.安装wxpython的时候报错 “no installation of python 2.7 found in registy” 解决方案: win7上,已经安装python27,但是在安装wxp ...

  6. #386. 【UNR #3】鸽子固定器

    #386. [UNR #3]鸽子固定器 题目链接 官方题解 分析: 神奇的做法+链表. 首先按照大小排序. 对于小于选择小于m个物品的时候,这个m个物品一定是一段连续的区间.因为,如果中间空着一个物品 ...

  7. ruby 技巧 根据函数的返回

    一般语言中,函数必须有返回值,即要带个return关键字.但在ruby中,return不是必须的,如果不写会默认返回最终计算的结果.举例 def add(a,b) # 省去了return a + b ...

  8. solr 学习

    点击dataimport 没有handler数据  重启下 tomcat 如果没有权限 Cannot find ./catalina.shThe file is absent or does not ...

  9. create-react-app react-redux项目 配置模块热更新hmr

    HRM并不是create-react-app专属的,提供一篇博客介绍hrm http://chrisshepherd.me/posts/adding-hot-module-reloading-to-c ...

  10. hackhttp模板的介绍

    hackhttp模板:造福人类 发起get/post/ 发起http原始数据包 漏洞利用:更为快捷放放不安 #hackhttp使用方法hh=hackhttp.hackhttp() code,head, ...