一 问题来源:

看PRML第二章时遇到的。

二 问题描述:

PRML第68页说:“We shall see that an import role is played by conjugate priors, that lead to posterior distributions having the same functional form as the prior , and that therefore lead to a greatly simplified Bayesian analysis.”

三 解释:我们看到,共轭先验在贝叶斯推理中具有重要意义,它使得后验分布和先验具有相同的函数形式。现在假设我们有这样几类概率:

p(θ)(先验分布),

p(θ|X)(后验分布),

p(X),

p(X|θ) (似然函数).

它们之间的关系可以通过贝叶斯公式进行连接: 后验分布 = 似然函数* 先验分布/ P(X)。之所以采用共轭先验的原因是可以使得先验分布和后验分布的形式相同,这样一方面合符人的直观(它们应该是相同形式的;另外一方面是可以形成一个先验链,即现在的后验分布可以作为下一次计算的先验分布,如果形式相同就可以形成一个链条。为了使得先验分布和后验分布的形式相同,我们定义:如果先验分布和似然函数可以使得先验分布和后验分布有相同的形式,那么就称先验分布与似然函数是共轭的。所以共轭是指:先验分布和似然函数共轭。

四 常见的几个先验分布与其共轭分布:

五 Conjugate prior的意义:

使得贝叶斯推理更加方便,比如在Sequential Bayesian inference(连续贝叶斯推理)中,得到一个observation之后,可以算出一个posterior(后验)。由于选取的是Conjugate prior共轭先验,因此后验和原来先验的形式一样,可以把该后验当做新的先验,用于下一次observation,然后继续迭代。
 

六 Conjugate prior的计算:-(来自网络资源,具体哪儿忘记了)

更多0

转:Conjugate prior-共轭先验的解释的更多相关文章

  1. 共轭先验(conjugate prior)

    共轭是贝叶斯理论中的一个概念,一般共轭要说是一个先验分布与似然函数共轭: 那么就从贝叶斯理论中的先验概率,后验概率以及似然函数说起: 在概率论中有一个条件概率公式,有两个变量第一个是A,第二个是B , ...

  2. Conjugate prior relationships

    Conjugate prior relationships The following diagram summarizes conjugate prior relationships for a n ...

  3. Bayesian statistics

    文件夹 1Bayesian model selection贝叶斯模型选择 1奥卡姆剃刀Occams razor原理 2Computing the marginal likelihood evidenc ...

  4. Dirichlet Distribution

    Beta分布: 二项式分布(Binomial distribution): 多项式分布: Beta分布: Beta分布是二项式分布的共轭先验(conjugate prior) Dirichlet Di ...

  5. [MCSM]Exponential family: 指数分布族

    Exponential family(指数分布族)是一个经常出现的概念,但是对其定义并不是特别的清晰,今天好好看了看WIKI上的内容,有了一个大致的了解,先和大家分享下.本文基本是WIKI上部分内容的 ...

  6. 机器学习的数学基础(1)--Dirichlet分布

    机器学习的数学基础(1)--Dirichlet分布 这一系列(机器学习的数学基础)主要包括目前学习过程中回过头复习的基础数学知识的总结. 基础知识:conjugate priors共轭先验 共轭先验是 ...

  7. An Introduction to Variational Methods (5.3)

    从之前的文章中,我们已经得到了所有需要求解的参数的优化分布的形式,分别为: ‍ 但是,我们从这些分布的表达式中(参见之前的文章),可以发现这些式子并不能够直接求解.这是因为各个参数之间相互耦合,从而导 ...

  8. (转)机器学习的数学基础(1)--Dirichlet分布

    转http://blog.csdn.net/jwh_bupt/article/details/8841644 这一系列(机器学习的数学基础)主要包括目前学习过程中回过头复习的基础数学知识的总结. 基础 ...

  9. [AI] 深度数学 - Bayes

    数学似宇宙,韭菜只关心其中实用的部分. scikit-learn (sklearn) 官方文档中文版 scikit-learn Machine Learning in Python 一个新颖的onli ...

随机推荐

  1. bash脚本练习

    练习一: 1.添加5个用户,user1,...,user5: 2.每个用户的密码同用户名,添加密码完成后,不显示命令的执行结果: 3.每个用户添加完成后,都要显示用户某某已添加成功. useradd ...

  2. Resharp使用简记

    一图流: 拾贝: .字符串引号中直接回车键自动添加连接字符串 Ctrl+B:转到定义 Ctr+F11:展示类结构 Ctr+Alt+j:包围代码块 Ctr+\:注释和取消注释 Alt+Ins:重构 Ct ...

  3. Pyhton网络爬虫实例_豆瓣电影排行榜_Xpath方法爬取

    -----------------------------------------------------------学无止境------------------------------------- ...

  4. Pyhton网络爬虫实例_豆瓣电影排行榜_BeautifulSoup4方法爬取

    -----------------------------------------------------------学无止境------------------------------------- ...

  5. C 判断成绩是否及格

    #include <stdio.h> int main(int argc, char **argv) { // 新建两个变量  pass代表及格分数的固定变量 score代表学生成绩的一个 ...

  6. List和String数组相互转化

    在工作中经常会遇到需要String[] 参数的地方,我们可以先定义一个list,再转成String[] 来使用,使用list的好处自然是可以随时方便的添加删除元素,下面是方法: List list = ...

  7. LeetCode 700——二叉搜索树中的搜索

    1. 题目 2. 解答 如果根节点为空,直接返回 NULL.如果根节点非空,从根节点开始循环查找,直到节点为空. 如果待查找的值大于当前节点值,节点指向右孩子: 如果待查找的值小于当前节点值,节点指向 ...

  8. BZOJ 4361 isn 容斥+dp+树状数组

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4361 题意概述: 给出一个长度为N的序列A(A1,A2...AN).如果序列A不是非降的 ...

  9. DAY2敏捷冲刺

    站立式会议 工作安排 (1)服务器配置 (2)数据库连接 (3)页面创意 燃尽图 代码提交记录 感想 林一心:centos配置服务器真的算是一个不小的坑,目前数据库配置清楚,脚本部署好明天测试交互,还 ...

  10. ACM 第十三天

    训练赛题目 题目地址:https://odzkskevi.qnssl.com/415c275cb0a15fcb4ede21b8cb5297de?v=1533963116   A题代码: #includ ...