Description

你的面前有N个数排成一行。分别为A1, A2, … , An。你打算在每相邻的两个 Ai和 Ai+1 间都插入一个加号或者
减号或者乘号。那么一共有 3^(n-1) 种可能的表达式。你对所有可能的表达式的值的和非常感兴趣。但这毕竟太
简单了,所以你还打算支持一个修改操作,可以修改某个Ai 的值。你能够编写一个程序对每个修改都输出修改完
之后所有可能表达式的和吗?注意,修改是永久的,也就是说每次修改都是在上一次修改的基础上进行, 而不是
在最初的表达式上进行。

Input

第一行包含 2 个正整数 N 和 Q,为数的个数和询问的个数。
接下来一行 n 个非负整数,依次表示a1,a2...an
在接下来 Q 行,其中第 ?? 行两个非负整数Ti 和Vi,表示要将 Ati 修改为 Vi。其中 1 ≤ Ti ≤ N。
保证对于 1 ≤ J ≤ N, 1 ≤ i≤ Q,都有 Aj,Vi ≤ 10^4。
N,Q<=100000,本题仅有三组数据

Output

输出共 Q 行,其中第 i 行表示第 i 个询问之后所有可能表达式的和,对10^9 + 7 取模。

Sample Input

5 5
9384 887 2778 6916 7794
2 8336
5 493
3 1422
1 28
4 60

Sample Output

890543652
252923708
942282590
228728040
608998099
 
一颗赛艇,我是这么推的结论:
首先考虑暴力DP,设S[i]表示∏j<=i Aj。f[i]表示前i个数在之间随便插数的结果之和,不难得到f[i]=∑j<i (2*f[j]) + S[i]。
然后3*f[i]-S[i]=∑j<=i (2*f[j]) 
f[i+1]=∑j<=i (2*f[j]) + S[i+1]
        =3*f[i] (-S[i]+S[i+1])
考虑每个S[i]-S[i-1]对f[n]的影响,则f[n]=∑(S[i]-S[i-1])*3^(n-i)。
裂项一下,则f[n]=2*∑(S[i]*3^(n-i-1))+S[n]。
然后就可以用线段树简单维护一下答案了。
然后又想了一下,发现答案可以这样理解:枚举第一串*号拓展到哪个位置,除了放了n-1个*号的情况,下一步放+和放-号的答案刚好抵消,所以对答案的贡献刚好是S[i]*3^(n-i-1)。
膜。的。长。者。
#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
const int BufferSize=1<<16;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,1,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=0,f=1;char c=Getchar();
for(;!isdigit(c);c=Getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=Getchar()) x=x*10+c-'0';
return x*f;
}
typedef long long ll;
const int maxn=100010;
const int mod=1000000007;
ll pow(ll n,int m) {
ll ans=1;
for(;m;m>>=1,(n*=n)%=mod) if(m&1) (ans*=n)%=mod;
return ans;
}
int n,q,A[maxn],xp[maxn];
ll pown,inv3,sumk[maxn<<2],sumv[maxn<<2];
void maintain(int o,int l,int r) {
int mid=l+r>>1,lc=o<<1,rc=lc|1;
sumk[o]=sumk[lc]*sumk[rc]%mod;
sumv[o]=(sumv[lc]+sumv[rc]*xp[mid-l+1]%mod*sumk[lc])%mod;
}
void build(int o,int l,int r) {
if(l==r) sumk[o]=A[l],sumv[o]=A[l]*pown%mod;
else {
int mid=l+r>>1,lc=o<<1,rc=lc|1;
build(lc,l,mid);build(rc,mid+1,r);
maintain(o,l,r);
}
}
void update(int o,int l,int r,int p) {
if(p==n) {A[n]=read();return;}
if(l==r) sumk[o]=read(),sumv[o]=sumk[o]*pown%mod;
else {
int mid=l+r>>1,lc=o<<1,rc=lc|1;
if(p<=mid) update(lc,l,mid,p);
else update(rc,mid+1,r,p);
maintain(o,l,r);
}
}
int main() {
n=read();q=read();xp[0]=1;inv3=pow(3,mod-2);pown=pow(3,n-2);
rep(i,1,n) A[i]=read(),xp[i]=xp[i-1]*inv3%mod;
build(1,1,n-1);
rep(i,1,q) {
update(1,1,n-1,read());
printf("%lld\n",(sumv[1]*2+sumk[1]*A[n])%mod);
}
return 0;
}

  

BZOJ4597: [Shoi2016]随机序列的更多相关文章

  1. BZOJ4597 SHOI2016随机序列(线段树)

    先考虑题目所说的太简单了的问题.注意到只要把加减号相取反,就可以得到一对除了第一项都互相抵消的式子.于是得到答案即为Σf(i)g(i),其中f(i)为前缀积,g(i)为第i个数前面所有符号均填乘号,第 ...

  2. 【BZOJ4597】[Shoi2016]随机序列 线段树

    [BZOJ4597][Shoi2016]随机序列 Description 你的面前有N个数排成一行.分别为A1, A2, … , An.你打算在每相邻的两个 Ai和 Ai+1 间都插入一个加号或者减号 ...

  3. P4340 [SHOI2016]随机序列

    题目 P4340 [SHOI2016]随机序列 思维好题 做法 是否觉得水在于你是否发现加减是会抵消的,所以我们只用考虑乘的部分 一块乘只能前面无号(也就是前缀形式)才统计,所以用线段树维护区间前缀乘 ...

  4. BZOJ 4597: [Shoi2016]随机序列

    4597: [Shoi2016]随机序列 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 255  Solved: 174[Submit][Status ...

  5. BZOJ4597:[SHOI2016]随机序列——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4597 你的面前有N个数排成一行.分别为A1, A2, … , An.你打算在每相邻的两个 Ai和 ...

  6. 【bzoj4597】 [Shoi2016]随机序列

    可以发现加减号之间可以互相抵消. 真正加到答案里的只有一些前缀积. 记s[i]为a[1]*a[2]*a[3]...*a[i].那s[i]在答案中出现的次数就是2*3^(n-i-1); 修改一个数只会对 ...

  7. [洛谷P4340][SHOI2016]随机序列

    题目大意:有$n(n\leqslant10^5)$个数,每两个数之间可以加入$+-\times$三种符号,$q(q\leqslant10^5)$次询问,每次询问修改一个数后,所有表达式可能的值的和 题 ...

  8. SHOI2016 随机序列

    给你一个数列,在相邻两个数之间插入加号,减号或乘号 每次支持单点修改,求所有这样可以得到的表达式之和,膜1e9 + 7 sol: 我是个 sb ... 可以发现,如果某位置出现了加号,后面一定有一个减 ...

  9. bzoj 4597||洛谷P4340 [Shoi2016]随机序列

    https://www.lydsy.com/JudgeOnline/problem.php?id=4597 https://www.luogu.org/problemnew/show/P4340 妄图 ...

随机推荐

  1. WebForm控件--2016年12月29日

    简单控件 1.Label  =>   <span id="Label1">Label1</span> 2.Literal  =>  Text 填 ...

  2. nginx配置反向代理解决前后端分离跨域问题

    摘自<AngularJS深度剖析与最佳实践>P132 nginx配置文件如下: server { listen ; server_name your.domain.name; locati ...

  3. ubuntu 16.04安装docker

    环境 操作系统:ubuntu 16.04 64位,默认安装 准备 1. 添加GPG key: $ sudo apt-key adv --keyserver hkp://p80.pool.sks-key ...

  4. Python全栈开发【模块】

    Python全栈开发[模块] 本节内容: 模块介绍 time random os sys json & picle shelve XML hashlib ConfigParser loggin ...

  5. java 文件保存到本地

    private void savePic(InputStream inputStream, String fileName) { OutputStream os = null; try { Strin ...

  6. DevExpress Ribbon右上角button显示文本设置

    设置ribboncontrol.ShowItemCaptionsInPageHeader 属性为true

  7. Home 安转beta版软件

    今天想装测试版的cocoapods,用 brew install cocoapods 后,总是安装稳定版,就是1.1.0,不是最新的beta版,发现用下面这个命令可以装最新beta版 brew ins ...

  8. Python3.5之TuShare

    这部分是直接搬运过来的,官方网站http://tushare.waditu.com/ TuShare是一个免费.开源的python财经数据接口包.主要实现对股票等金融数据从数据采集.清洗加工 到 数据 ...

  9. RecyclerView的使用之多种Item加载布局

    精益求精,为了更加透彻熟练得掌握,本文再次给大家介石介绍下如何利用RecyclerView实现多Item布局的加载,多Item布局的加载的意思就是在开发过程中List的每一项可能根据需求的不同会加载不 ...

  10. 还敢说你是程序员?一律师闲着没事写了个app,用户量600万

    今天周五,是我在上海上班的第五天. 这几天怎么说呢,跟混日子差不多,因为处处有“”惊喜”. 上班第一天领来办公电脑,登上自己的公司邮箱,惊喜来了!我的擦擦擦,全TM是英文呐!作为一个从村儿里来的码农, ...