References:

1. Stanford University CS97SI by Jaehyun Park

2. Introduction to Algorithms

3. Kuangbin's ACM Template

4. Data Structures by Dayou Liu

5. Euler's Totient Function


Getting Started:

1) What is a good algorithm?

The answer could be about correctness, time complexity, space complexity, readability, robustness, reusability, flexibility, etc.

However, in competitive programming, we care more about

  • Correctness - It will result in Wrong Answer(WA)
  • Time complexity - It will result in Time Limit Exceeded(TLE)
  • Space complexity - It will result in Memory Limit Exceeded(MLE)

In algorithms contest, we need to pay attention to the time limit, memory limit, the range of input and output.

Example: A+B problem

int x;
int y;
cin >> x >> y;
cout << x+y;

1+2 is ok

1+999999999999999 will result in overflow

2) How to prove correctness? 

  • Prove by contradiction
  • Prove by induction(Base case, inductive step)

Example: T(n) = T(n-1) + 1, T(1) = 0. Prove that T(n) = n - 1 for all n > 1 and n is an integer.

Proof:

(Base case) When n=1, T(1) = 1-1 = 0. It is correct.

(Inductive Step) Suppoer n = k, it is correct. T(k) = k - 1.

For n = k + 1, T(k+1) = T(k) + 1 = k - 1 + 1 = k. It is correct for n = k + 1.

Therefore, the algorithm is correct for all n > 0 and n is an integer.

3) Big O Noatation

O(1) < O(log n) < O(n) < O(nlog n) < O($n^2$) < O($n^3$) < O($2^n$)


1. Algebra 

1.1 Simple Algebra Formulas:

$$\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^n k^3 = (\sum k)^2= (\frac{n(n+1)}{2})^2$$

1.2 Fast Exponentiation

How to calculate $x^k$?

$x^k = x*x*x...x$

Notice that:

$x*x = x^2$

$x^2 * x^2 = x^4$

...

double pow (double x, int k) {
if(k==0) return 1;
if(k==1) return x;
return k%2==0?pow(x,k/2)*pow(x,k/2):pow(x,k-1)*x;
}

(Important to consider special cases when you design an algorithm)

1) k is 0

2) k is 1

3) k is even and k is not 0

4) k is odd and k is not 1

2. Number Theory

 2.1 Greatest Common Divisor(GCD)

gcd(x,y) - greatest integer divides both x and y.

- gcd(a,b) = gcd(a, b-a)

- gcd(a, 0) = a

- gcd(a,b) is the smallest positive number in{$ax+by | x, y \in \mathbb{Z} $ }

$x\equiv y\ (mod\ m) \Rightarrow a\%m=b\%m$

Properties: 
If $a_1 \equiv b_1(mod\ m), a_2 \equiv b_2(mod m)$, then:
$a_1 +a_2 \equiv b_1+ b_2(mod\ m)$
$a_1 -a_2 \equiv b_1- b_2(mod\ m)$
$a_1 *a_2 \equiv b_1* b_2(mod\ m)$

  • Euclidean algorithm
int gcd(int a, int b) {
while(b) {int r = a%b; a = b; b = r;}
return a;
}
  • Extended Euclidean algorithm

Problem: Given a,b,c. Find integer solution x,y for ax+by=c.

If c % gcd(a,b) = 0, there are infinite many solutions. Otherwise, there is no solution.

long long extended_gcd(long long a, long long b, long long &x, long long &y) {
if(a==0 && b==0) return -1;
if(b==0) {x=1,y=0; return a;}
long long d=extended_gcd(b, a%b, y, x);
y -= a/b*x;
return d;
}

2.2 Prime Numbers

  • For any N$\in \mathbb{Z} $,there is $N=p_1^{e1}p^{e2}_2...p^{er}_r$. And $p_1,p_2, ..., p_r$ are prime numbers. The number of factors for N is $(e1+1)(e2+1)...(er+1)$.
  • Sieve's code
void getPrime(int n) {
int i, j;
bool flag[n + 1];
int prime[n + 1];
memset(flag, true, sizeof(flag)); // suppose they are all prime numbers
int count = 0; // the number of prime numbers
for(i = 2; i <= n; ++i) {
if(flag[i]) prime[++count] = i;
for(j = 1; j <= count && i*prime[j] <= n; j++) {
flag[i*prime[j]] = false;
if(i%prime[j] == 0) break;
}
}
}

2.3 Bionomial Coefficients

${n}\choose{k} $= $\frac{n(n-1)...(n-k+1)}{k!}$

Use when both n and k are small. Overflow risk.

2.4 Euler's Function

$n=p_1^{n_1} * p_2^{n_2} * ... p_k^{n_k}$
$\varphi(x) = x(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k}) $

int getPhi(int x)
{
float ans = x;
for (int p=2; p*p<=n; ++p){
if (x % p == 0){
while (x % p == 0)
x /= p;
ans*=(1.0-(1.0/p));
}
}
if (x > 1)
ans*=(1.0-(1.0/x));
return (int)ans;
}

Practice Problems: (HDU, POJ, UVa - https://vjudge.net/ ; LeetCode - leetcode.com)

POJ 1061, 1142, 2262, 2407, 1811, 2447

HDU 1060, 1124, 1299, 1452, 2608, 1014, 1019, 1108, 4651

LeetCode 204

UVa 294

[Data Structures and Algorithms - 1] Introduction & Mathematics的更多相关文章

  1. CSIS 1119B/C Introduction to Data Structures and Algorithms

    CSIS 1119B/C Introduction to Data Structures and Algorithms Programming Assignment TwoDue Date: 18 A ...

  2. CSC 172 (Data Structures and Algorithms)

    Project #3 (STREET MAPPING)CSC 172 (Data Structures and Algorithms), Spring 2019,University of Roche ...

  3. Basic Data Structures and Algorithms in the Linux Kernel--reference

    http://luisbg.blogalia.com/historias/74062 Thanks to Vijay D'Silva's brilliant answer in cstheory.st ...

  4. 剪短的python数据结构和算法的书《Data Structures and Algorithms Using Python》

    按书上练习完,就可以知道日常的用处啦 #!/usr/bin/env python # -*- coding: utf-8 -*- # learn <<Problem Solving wit ...

  5. 6-1 Deque(25 分)Data Structures and Algorithms (English)

    A "deque" is a data structure consisting of a list of items, on which the following operat ...

  6. 学习笔记之Problem Solving with Algorithms and Data Structures using Python

    Problem Solving with Algorithms and Data Structures using Python — Problem Solving with Algorithms a ...

  7. Algorithms & Data structures in C++& GO ( Lock Free Queue)

    https://github.com/xtaci/algorithms //已实现 ( Implemented ): Array shuffle https://github.com/xtaci/al ...

  8. Persistent Data Structures

    原文链接:http://www.codeproject.com/Articles/9680/Persistent-Data-Structures Introduction When you hear ...

  9. The Swiss Army Knife of Data Structures … in C#

    "I worked up a full implementation as well but I decided that it was too complicated to post in ...

随机推荐

  1. 身份认证系统(三)什么是OAuth2

    本文准备用最简单的语言告诉大家什么是OAuth2 ,OAuth2是干什么的. 我们有一个资源服务器,资源服务器中有一系列的用户数据. 现在有一个应用想想要获取我们的用户数据. 那么最简单的方法就是我们 ...

  2. oracle查询相关注意点

    单表查询: .or 和 and 混合使用 需求:查询业主名称包含'刘'或门牌号包含'5'的,并且地址编号为3的记录 and 的权限优先于 or 所以需要在or的两边添加() 2. 范围查询 除了传统的 ...

  3. 解决IDEA打印到控制台的中文内容乱码

    File-->Settings-->Editor-->File Encodings->将图中内容均设置为UTF-8--->点击+号选中自己的项目->Apply--& ...

  4. Spring quantz--定时任务调度工具

    1.在xml中交给spring管理的一些类 <bean id="cancelOrderJobDetail" class="org.springframework.s ...

  5. python学习——初始面向对象

    一.讲在前面 编程的世界中有三大体系,面向过程.面向函数和面向对象编程.而面向过程的编程就包括了面向函数编程,接下来说一下面向对象.假如 ,你现在是一家游戏公司的开发人员,现在需要你开发一款叫做< ...

  6. Python学习手册之正则表达式示例--邮箱地址提取

    在上一篇文章中,我们介绍了 Python 的捕获组和特殊匹配字符串,现在我们介绍 Python 的正则表达式使用示例.查看上一篇文章请点击:https://www.cnblogs.com/dustma ...

  7. 使用Goland同步远程代码

    新版本的goland貌似已经有了Deployment功能,故本篇文章描述的方法也不推荐使用了 以前写php时候习惯使用phpstorm这个编译器,除去本身功能强大不说,比较方便的是其自身带的Deplo ...

  8. js input 不可编辑可传值设置

    在表单提交中,设置input不可编辑,但是可以向后台传输数据,的设置方法: $('#input').attr("readonly",true);

  9. vue相关ajax库的使用

    相关库: vue-resource: vue插件, 多用于vue1.x axios: 第三方库, 多用于vue2.x vue-resource使用 // 引入模块 import VueResource ...

  10. Tips & Tricks Learned Releasing an Hybrid App Using Steroids.js

    http://marcgg.com/blog/2014/04/09/phonegap-steroids-hybrid-native-app-tips/