[Data Structures and Algorithms - 1] Introduction & Mathematics
References:
1. Stanford University CS97SI by Jaehyun Park
3. Kuangbin's ACM Template
4. Data Structures by Dayou Liu
Getting Started:
1) What is a good algorithm?
The answer could be about correctness, time complexity, space complexity, readability, robustness, reusability, flexibility, etc.
However, in competitive programming, we care more about
- Correctness - It will result in Wrong Answer(WA)
- Time complexity - It will result in Time Limit Exceeded(TLE)
- Space complexity - It will result in Memory Limit Exceeded(MLE)
In algorithms contest, we need to pay attention to the time limit, memory limit, the range of input and output.
Example: A+B problem
int x;
int y;
cin >> x >> y;
cout << x+y;
1+2 is ok
1+999999999999999 will result in overflow
2) How to prove correctness?
- Prove by contradiction
- Prove by induction(Base case, inductive step)
Example: T(n) = T(n-1) + 1, T(1) = 0. Prove that T(n) = n - 1 for all n > 1 and n is an integer.
Proof:
(Base case) When n=1, T(1) = 1-1 = 0. It is correct.
(Inductive Step) Suppoer n = k, it is correct. T(k) = k - 1.
For n = k + 1, T(k+1) = T(k) + 1 = k - 1 + 1 = k. It is correct for n = k + 1.
Therefore, the algorithm is correct for all n > 0 and n is an integer.
O(1) < O(log n) < O(n) < O(nlog n) < O($n^2$) < O($n^3$) < O($2^n$)
1. Algebra
1.1 Simple Algebra Formulas:
$$\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$
$$\sum_{k=1}^n k^3 = (\sum k)^2= (\frac{n(n+1)}{2})^2$$
1.2 Fast Exponentiation
How to calculate $x^k$?
$x^k = x*x*x...x$
Notice that:
$x*x = x^2$
$x^2 * x^2 = x^4$
...
double pow (double x, int k) {
if(k==0) return 1;
if(k==1) return x;
return k%2==0?pow(x,k/2)*pow(x,k/2):pow(x,k-1)*x;
}
(Important to consider special cases when you design an algorithm)
1) k is 0
2) k is 1
3) k is even and k is not 0
4) k is odd and k is not 1
2. Number Theory
2.1 Greatest Common Divisor(GCD)
gcd(x,y) - greatest integer divides both x and y.
- gcd(a,b) = gcd(a, b-a)
- gcd(a, 0) = a
- gcd(a,b) is the smallest positive number in{$ax+by | x, y \in \mathbb{Z} $ }
$x\equiv y\ (mod\ m) \Rightarrow a\%m=b\%m$
Properties:
If $a_1 \equiv b_1(mod\ m), a_2 \equiv b_2(mod m)$, then:
$a_1 +a_2 \equiv b_1+ b_2(mod\ m)$
$a_1 -a_2 \equiv b_1- b_2(mod\ m)$
$a_1 *a_2 \equiv b_1* b_2(mod\ m)$
- Euclidean algorithm
int gcd(int a, int b) {
while(b) {int r = a%b; a = b; b = r;}
return a;
}
- Extended Euclidean algorithm
Problem: Given a,b,c. Find integer solution x,y for ax+by=c.
If c % gcd(a,b) = 0, there are infinite many solutions. Otherwise, there is no solution.
long long extended_gcd(long long a, long long b, long long &x, long long &y) {
if(a==0 && b==0) return -1;
if(b==0) {x=1,y=0; return a;}
long long d=extended_gcd(b, a%b, y, x);
y -= a/b*x;
return d;
}
2.2 Prime Numbers
- For any N$\in \mathbb{Z} $,there is $N=p_1^{e1}p^{e2}_2...p^{er}_r$. And $p_1,p_2, ..., p_r$ are prime numbers. The number of factors for N is $(e1+1)(e2+1)...(er+1)$.
- Sieve's code
void getPrime(int n) {
int i, j;
bool flag[n + 1];
int prime[n + 1];
memset(flag, true, sizeof(flag)); // suppose they are all prime numbers
int count = 0; // the number of prime numbers
for(i = 2; i <= n; ++i) {
if(flag[i]) prime[++count] = i;
for(j = 1; j <= count && i*prime[j] <= n; j++) {
flag[i*prime[j]] = false;
if(i%prime[j] == 0) break;
}
}
}
2.3 Bionomial Coefficients
${n}\choose{k} $= $\frac{n(n-1)...(n-k+1)}{k!}$
Use when both n and k are small. Overflow risk.
2.4 Euler's Function
$n=p_1^{n_1} * p_2^{n_2} * ... p_k^{n_k}$
$\varphi(x) = x(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k}) $
int getPhi(int x)
{
float ans = x;
for (int p=2; p*p<=n; ++p){
if (x % p == 0){
while (x % p == 0)
x /= p;
ans*=(1.0-(1.0/p));
}
}
if (x > 1)
ans*=(1.0-(1.0/x));
return (int)ans;
}
Practice Problems: (HDU, POJ, UVa - https://vjudge.net/ ; LeetCode - leetcode.com)
POJ 1061, 1142, 2262, 2407, 1811, 2447
HDU 1060, 1124, 1299, 1452, 2608, 1014, 1019, 1108, 4651
LeetCode 204
UVa 294
[Data Structures and Algorithms - 1] Introduction & Mathematics的更多相关文章
- CSIS 1119B/C Introduction to Data Structures and Algorithms
CSIS 1119B/C Introduction to Data Structures and Algorithms Programming Assignment TwoDue Date: 18 A ...
- CSC 172 (Data Structures and Algorithms)
Project #3 (STREET MAPPING)CSC 172 (Data Structures and Algorithms), Spring 2019,University of Roche ...
- Basic Data Structures and Algorithms in the Linux Kernel--reference
http://luisbg.blogalia.com/historias/74062 Thanks to Vijay D'Silva's brilliant answer in cstheory.st ...
- 剪短的python数据结构和算法的书《Data Structures and Algorithms Using Python》
按书上练习完,就可以知道日常的用处啦 #!/usr/bin/env python # -*- coding: utf-8 -*- # learn <<Problem Solving wit ...
- 6-1 Deque(25 分)Data Structures and Algorithms (English)
A "deque" is a data structure consisting of a list of items, on which the following operat ...
- 学习笔记之Problem Solving with Algorithms and Data Structures using Python
Problem Solving with Algorithms and Data Structures using Python — Problem Solving with Algorithms a ...
- Algorithms & Data structures in C++& GO ( Lock Free Queue)
https://github.com/xtaci/algorithms //已实现 ( Implemented ): Array shuffle https://github.com/xtaci/al ...
- Persistent Data Structures
原文链接:http://www.codeproject.com/Articles/9680/Persistent-Data-Structures Introduction When you hear ...
- The Swiss Army Knife of Data Structures … in C#
"I worked up a full implementation as well but I decided that it was too complicated to post in ...
随机推荐
- 如何应用SPRITEKIT的CAMERA实现游戏中的ENDLESS无限循环背景
A Tutorial For How To Use SpriteKit Camera Making Endless Background Player运用Camera节点向前移动的效果 向前舞动 命为 ...
- 搭建Extjs框架(一)
搭建Extjs框架 pc端 github https://github.com/Status400/Extjs-6.2.0-demo 欢迎start 准本工作: 官方下载Extjs ...
- 『ACM C++』 PTA 天梯赛练习集L1 | 040-41
近期安排 校赛3.23天梯赛3.30华工校赛 4.21省赛 5.12 ------------------------------------------------L1-040----------- ...
- nginx通过upstream实现负载均衡
随着业务和用户不断增加,单台服务器无法满足业务需求,产生服务器集群的场景.为了能充分利用服务器集群,最理想的方式就是整个集群的利用率都很平均且稳定在理想值范围内. 负载均衡(Load Balance) ...
- MySQL 参数slave_pending_jobs_size_max设置
今天生产环境上从库出现SQL进程停止的异常,错误信息如下: Slave_IO_Running: Yes Slave_SQL_Running: No Replicate_Do_DB: Replicate ...
- 端午节佳节从CSDN博客搬家来这,请多多指教
端午节佳节从CSDN博客搬家来博客园,请多多指教
- 慕课笔记-JavaScript正则表达式
目录 慕课笔记-JavaScript正则表达式笔记 概述 RegExp对象 修饰符 元字符 字符类 范围类 预定义类 预定义字符 边界 量词 贪婪模式 分组 或(使用竖线表示) 反向引用 忽略分组 前 ...
- 能够还原jQuery1.8的toggle的功能的插件
下面这个jQuery插件能够还原1.8的toggle的功能,如果你需要,可以直接把下面这段代码拷贝到你的jQuery里面,然后跟平时一样使用toggle的功能即可. //toggle plugin f ...
- python中字符串的常见操作
demo:mystr = 'hello python' 1.find:mystr.find(str, start=0, end=len(mystr)),检测字符串中是否有要查询的字符,如果有返回开始的 ...
- DOM中的事件傳播機制
要講到事件傳播機制之前,首先要瞭解的是 什麼是事件? 事件,發生在靜態頁面與動態行為之間的交互行為.是JavaScript 和 HTML的交互是通过事件实现的.比如,按鈕的點擊,鼠標的滑過,鍵盤的輸入 ...