RTP Tools
RTP Tools (Version 1.20)
https://wiki.wireshark.org/RTP_statistics
Here is a small example:
- Install JMF (JMstudio is included)
- Download rtptools
- Open the RTP capture file with Wireshark
Select the proper UDP and force its decoding as RTP: Menu Analyze >> Decode As... RTP.
Menu Statistics(Wireshark 1.0) or Telephony >> RTP >> Show all streams. Select the one of your interest, and press button Save As... into a "rtpdump" formatted file.
- Start JMstudio
Menu File >> Open RTP Session and insert your local IP address (it didn't work with 127.0.0.1 for me) like this:
- Press button "Open" - now JMstudio waits for the stream
- Open a terminal and type:
user@host$ rtpplay -T -f /path/to/your/captured.rtpdump 192.168.0.23/1234
You should now hear what you've captured. Note:JMstudio does not support every codec, but some commonly used for RTP (worked perfect for me to listen to a captured kphone-session using GSM as codec).
Description
The rtptools distribution consists of a number of small applications that can be used for processing RTP data.
- rtpplay
- Play back RTP sessions recorded by rtpdump
- rtpsend
- Generate RTP packets from textual description, generated by hand or rtpdump
- rtpdump
- Parse and print RTP packets, generating output files suitable for rtpplay and rtpsend
- rtptrans
- RTP translator between unicast and multicast networks; also translates between VAT and RTP formats.
Installation
Sources for a variety of platforms and binaries for Windows are available from http://www.cs.columbia.edu/IRT/rtptools/download.
The RTP tools should compile on any Posix-compliant platform supporting sockets, as well as Windows/NT/95/98/2000 (Win32). They have been tested on SunOS 4.1, SunOS 5.x (Solaris), Linux, NT 4.0, SGI Irix, and HP-UX. Edit the directories and libraries at the top of Makefile and type make. The compiler must support ANSI C: gcc does, Sun's old /usr/ucb/cc does not.
Note: You must use the sun4
architecture for SunOS 4.1.x and sun5
for SunOS 5.x (Solaris). You will get system call errors if you do not.
- For Unix systems, type
- ./configure; make
- To install RTP tools on WIN32 machine, please follow the following steps:
- *.dsp files are project files. *.dsw file and workspace file.
User can open the workspace file and use 'batch compile' to compile all the projects.- In Visual C++ 6.0, open workspace file rtptools.dsw.
- In VC menu Build, use Batch Build to build all the tools.
- All the rtptools will be created under "debug\" directory.
For quite a character, who desire to compile on Borland C++ Builder, please open dump_bcb.bpr, play_bcb.bpr, send_bcb.bpr and trans_bcb.bpr under bcb directory. Only pressing ctr-F9 needed for compilation, and the tool will be generated on the same directory.
General Usage Hints
Network addresses can be either multicast or unicast addresses, unless stated otherwise. They may be specified in dotted-decimal notation (e.g., 224.2.0.1) or as a host name (e.g., lupus.fokus.gmd.de). Port numbers must be given as decimal numbers in the range of 1 to 65535. Network addresses are specified as destination/port/ttl. The time-to-live (ttl) value is optional and only applies to multicast.
For all commands, the flag -h or -? will print a short usage summary.
Unless otherwise noted, input is taken from stdin, and output sent to stdout. The extension .rtp
is suggested for files generated in rtpdump -F dump
format.
rtpplay
rtpplay [-T] [-v] [-f file] [-p profile] [-s sourceport] [-b begin] [-e end] destination/port[/ttl]
rtpplay reads RTP session data, recorded by rtpdump -F dump from either the file or stdin, if file is not specified, sending it to network address destination and port port with a time-to-live value of ttl.
If the flag -T
is given, the timing between packets corresponds to the arrival timing rather than the RTP timestamps. Otherwise, for RTP data packets, the timing given by the RTP timestamps is used, smoothing interarrival jitter and restoring packet sequence. RTCP packets are still sent with their original timing. This may cause the relative order of RTP and RTCP packets to be changed.
The source port(localport) for outgoing packets can be set with the -s flag. A random port is chosen if this flag is not specified.
The whole file is played unless the begin or end times are specified. Times are measured in seconds and fractions from the beginning of the recording.
The RTP clock frequency is read from the profile file if given; the default profile (RFC 1890) is used if not. The profile file contains lines with two fields each: the first is the numeric payload type, the second the clock frequency. The values read from the profile file are silently ignored if the -T
flag is used.
If you want to loop a particular file, it is easiest to put the rtpplay
command in a shell script.
The -v flag has rtpplay display the packets generated on stdout.
rtpplay
uses the hsearch (3C)
library, which may not be available on all operating systems.
rtpdump
rtpdump [-F format] [-t duration] [-x bytes] [-f file] [-o outputfile] address/port
rtpdump listens on the address and port pair for RTP and RTCP packets and dumps a processed version to outputfile if specified or stdout otherwise.
If file is specified, the file is used instead of the network address. If no network address is given, file input is expected from stdin. The file must have been recorded using the rtpdump dump
format.
The recording duration is measured in minutes.
From each packet, only the first bytes of the payload are dumped (only applicable for "dump" and "hex" formats).
Supported formats are:
format | text/binary | description |
---|---|---|
dump | binary | dump in binary format, suitable for rtpplay. The format is as follows: The file starts with#!rtpplay1.0 address/port\n
The version number indicates the file format version, not the version of RTP tools used to generate the file. The current file format version is 1.0. This is followed by one binary header (RD_hdr_t) and one RD_packet_t structure for each received packet. All fields are in network byte order. The RTP and RTCP packets are recorded as-is. typedef struct { |
header | like "dump", but don't save audio/video payload | |
payload | only audio/video payload | |
ascii | text | parsed packets (default), suitable for rtpsend :
844525628.240592 RTP len=176 from=131.136.234.103:46196 v=2 p=0 x=0 |
hex | like ascii, but with hex dump of payload | |
rtcp | like ascii, but only RTCP packets | |
short | RTP or vat data in tabular form: [-]time ts [seq], where a - indicates a set marker bit. The sequence number seq is only used for RTP packets.
844525727.800600 954849217 30667 |
rtpsend
rtpsend sends an RTP packet stream with configurable parameters. This is intended to test RTP features. The RTP or RTCP headers are read from a file, generated by hand, a test program or rtpdump (format "ascii").
rtpsend [-a] [-l] [-s sourceport] [-f file] destination/port[/ttl]
Packets are sent with a time-to-live value ttl.
If data is read from a file instead of stdin, the -l(loop) flag resends the same sequence of packets again and again.
The source port(localport) for outgoing packets can be set with the -s flag. A random port is chosen if this flag is not specified.
If the -a flag is specified, rtpsend includes a router alert IP option in RTCP packets. This is used by the YESSIR resource reservation protoccol.
The file file contains the description of the packets to be sent. Within the file, each entry starts with a time value, in seconds, relative to the beginning of the trace. The time value must appear at the beginning of a line, without white space. Within an RTP or RTCP packet description, parameters may appear in any order, without white space around the equal sign. Lines are continued with initial white space on the next line. Comment lines start with #. Strings are enclosed in quotation marks.
<time> RTP
v=<version>
p=<padding>
x=<extension>
m=<marker>
pt=<payload type>
ts=<time stamp>
seq=<sequence number>
ssrc=<SSRC>
cc=<CSRC count>
csrc=<CSRC>
data=<hex payload>
ext_type=<type of extension>
ext_len=<length of extension header>
ext_data=<hex extension data>
len=<packet size in bytes(including header)>
<time> RTCP (SDES v=<version>
(src=<source> cname="..." name="...")
(src=<source> ...)
)
(SR v=<version>
ssrc=<SSRC of data source>
p=<padding>
count=<number of sources>
len=<length>
ntp=<NTP timestamp>
psent=<packet sent>
osent=<octets sent>
(ssrc=<SSRC of source>
fraction=<loss fraction>
lost=<number lost>
last_seq=<last sequence number>
jit=<jitter>
lsr=<last SR received>
dlsr=<delay since last SR>
)
)
rtptrans
rtptrans [host]/port[/ttl] [host]/port[/ttl] [...]
rtptrans RTP/RTCP packets arriving from one of the addresses to all other addresses. Addresses can be a multicast or unicast. TTL values for unicast addresses are ignored. (Actually, doesn't check whether packets are RTP or not.)
Additionally, the translator can translate VAT packets into RTP packets. VAT control packets are translated into RTCP SDES packets with a CNAME and a NAME entry. However, this is only intended to be used in the following configuration: VAT packets arriving on a multicast connection are translated into RTP and sent over a unicast link. RTP packets are not (yet) translated into VAT packets and and all packets arriving on unicast links are not changed at all. Therefore, currently mainly the following topology is supported: multicast VAT -> translator -> unicast RTP; and on the way back it should lokk like this multicast VAT <- translator <- unicast VAT. This means that the audio agent on the unicast link should be able use both VAT and RTP.
Authors
The rtptools were written by Henning Schulzrinne, with enhancements by Ping Pan and Akira Tsukamoto. rtptrans was written by Dorgham Sisalem and enhanced by Steve Casner.
RTP Tools的更多相关文章
- A Study of WebRTC Security
转自:http://webrtc-security.github.io/ A Study of WebRTC Security Abstract Web Real-Time Communication ...
- VOIP开源项目源码地址
http://blog.csdn.net/hwz119/article/details/1781482 VoIP bookmarks from Klaus Darilion Below you ...
- 自己动手写RTP服务器——关于RTP协议
转自:http://blog.csdn.net/baby313/article/details/7353605 本文会带领着你一步步动手实现一个简单的RTP传输服务器,旨在了解RTP流媒体传输协议以及 ...
- 【NS2仿真】RTP协议安装
来自: http://personales.upv.es/fboronat/Research/NS2_RTP/NS2_RTP_RTCP_module.htm 文件:http://pan.baidu.c ...
- H.264视频的RTP荷载格式
Status of This Memo This document specifies an Internet standards track protocol for the Internet ...
- 自己写RTPserver——大约RTP协议
自己写RTPserver--大约RTP协议 本文将带领你一步一步地实现一个简单的手RTP变速器server,旨在了解RTP流媒体传输协议以及有关多媒体编解码器的一些知识. RTP协议的必备知识 要动手 ...
- rtp header
rtp协议基于udp传输,流媒体音视频数据被封装在rtp中,通过rtp协议进行实时的传输. 一.rtp协议头格式 The RTP header has a minimum size of 12 byt ...
- 流媒体协议之RTP详解20170921
1.RTP介绍 实时传输协议RTP(Real-time Transport Protocol)是一个网络传输协议,它是由IETF的多媒体传输工作小组1996年在RFC 1889中公布的,后在RFC35 ...
- RTP协议学习
RTP协议是承载在UDP协议之上的应用协议 http://blog.csdn.net/chen495810242/article/details/39207305 http://blog.51cto. ...
随机推荐
- Python3 文件读写r,w,a
# Author;Tsukasa ''' f = open('yesterday','w') #文件句柄...注意open分为‘r’读模式,‘w’写模式(d会先创建文件或者覆盖文件),‘a’为追加模式 ...
- 【爬虫】python 多线程知识
第一段代码: __author__ = 'Administrator' import threading import time index = 0 class MyThread(threading. ...
- [BZOJ 3326] 数数
Link: BZOJ 3326 传送门 Solution: 明显是一道数位$dp$的题目,就是递推式复杂了点 先要求出一个数$\bar{n}$向添加一位后的$\bar{np}$的转化关系 令$res[ ...
- 2017 icpc 沈阳网络赛
cable cable cable Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- BZOJ 1109 [POI2007]堆积木Klo(树状数组)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1109 [题目大意] Mary在她的生日礼物中有一些积木.那些积木都是相同大小的立方体. ...
- 【最小割】【Dinic】Gym - 101201G - Maximum Islands
题意:方格内有些位置是水域,有些位置是陆地,有些位置是被云彩遮挡住了:让你自己规定被云彩遮挡住的地方是陆地还是水域,使得陆地个数最多.(均为四连通块) 显然与陆地邻接的云彩填成水比较优.其他云彩格子填 ...
- 小H的硬币游戏
题目大意: 有n个物品排成一排,每个物品都有自己的价值,你每次可以从中挑选两个距离为k的物品取走,问最大的收益. (如果原来两个物品中间有物品被取走,距离不变) 思路: 贪心. 先按照每个物品的位置m ...
- Spring AOP动态代理
出现org.springframework.aop.framework.ProxyFactoryBean cannot be cast to 错误 在类型转换的时候, 调用getObject()方法, ...
- [Andrew Stankevich's Contest#21] Lempel-Ziv Compression
Time Limit: 20000/10000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) Special Judge ...
- 【常见加密方法】Base64编码&Tea算法简介
Base64编码 [Base64编码是什么] Base64是一种基于64个可打印字符来表示二进制数据的表示方法. ——维基百科 Base64,顾名思义,是基于64种可视字符的编码方式.这64种符号由A ...