题目地址:http://poj.org/problem?id=3903

题目:

Description

The world financial crisis is quite a subject. Some people are more relaxed while others are quite anxious. John is one of them. He is very concerned about the evolution of the stock exchange. He follows stock prices every day looking for rising trends. Given a sequence of numbers p1, p2,...,pn representing stock prices, a rising trend is a subsequence pi1 < pi2 < ... < pik, with i1 < i2 < ... < ik. John’s problem is to find very quickly the longest rising trend.

Input

Each data set in the file stands for a particular set of stock prices. A data set starts with the length L (L ≤ 100000) of the sequence of numbers, followed by the numbers (a number fits a long integer). 
White spaces can occur freely in the input. The input data are correct and terminate with an end of file.

Output

The program prints the length of the longest rising trend. 
For each set of data the program prints the result to the standard output from the beginning of a line.

Sample Input

6
5 2 1 4 5 3
3
1 1 1
4
4 3 2 1

Sample Output

3
1
1

Hint

There are three data sets. In the first case, the length L of the sequence is 6. The sequence is 5, 2, 1, 4, 5, 3. The result for the data set is the length of the longest rising trend: 3.
 
 
思路:dp入门水题。n^2的算法肯定会T的。所以只能用nlogn的算法;
  c【i】:表示长度为i的上升子序列的最后一个值(也是序列中的最大值);
  从左向右扫描题目所给的数组,然后在c数组中二分查找第一个大于a【i】的位置,然后更新c数组。最后c数组的大小就是最长上升子序列的长度。
  具体见代码吧,,没看懂的话可以看我dp分类里的另一个上升子序列的题目。讲的更详细。
代码:
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <list>
#include <stdexcept>
#include <functional>
#include <utility>
#include <ctime>
#define PB push_back
#define MP make_pair
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
#define PI acos((double)-1)
#define E exp(double(1))
const int K=+;
int a[K],c[K];
int main(void)
{
int n,cnt;
while(cin>>n)
{
cnt=;
memset(c,,sizeof(c));
for(int i=; i<=n; i++)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
{
int d=lower_bound(c+,c++cnt,a[i])-c;
c[d]=a[i];
cnt=max(cnt,d);
}
cout<<cnt<<endl;
}
return ;
}

poj3903 Stock Exchange 二分+dp的更多相关文章

  1. POJ3903 Stock Exchange LIS最长上升子序列

    POJ3903 Stock Exchange #include <iostream> #include <cstdio> #include <vector> #in ...

  2. poj3903 Stock Exchange(最长上升子序列)

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:id=3903">http://poj.org/problem?id=3903 Descrip ...

  3. POJ 3903:Stock Exchange(裸LIS + 二分优化)

    http://poj.org/problem?id=3903 Stock Exchange Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  4. POJ3903:Stock Exchange(LIS)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87125#problem/E 题目: Description The world ...

  5. POJ 3903 Stock Exchange

    Stock Exchange Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2954   Accepted: 1082 De ...

  6. POJ 3903 Stock Exchange (E - LIS 最长上升子序列)

    POJ 3903    Stock Exchange  (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...

  7. 二分+DP HDU 3433 A Task Process

    HDU 3433 A Task Process Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  8. POJ - 3903 Stock Exchange(LIS最长上升子序列问题)

    E - LIS Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Descripti ...

  9. hdu 3433 A Task Process 二分+dp

    A Task Process Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

随机推荐

  1. 请写出JavaScript中常用的三种事件。

    请写出JavaScript中常用的三种事件. 解答: onclick,onblur,onChange

  2. 设置EntityFramework中decimal类型数据精度

    EF中默认的decimal数据精度为两位数,当我们数据库设置的精度大于2时,EF将只会保留到2为精度. e.g. 2.1999将会被保存为2.20 网上找到常见的方法为重写DbContext的OnMo ...

  3. linux运维/自动化开发__目录

    服务器软件安装 nginx apache php mysql oracle tomcat memcached mongodb sqlserver 常用pc端工具安装使用 Xshell         ...

  4. EasyUI简单CRUD

    <!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml"><head>    < ...

  5. 安装tomcat出现failed to install tomcat6 service错误及解决方法(转载)

    安装安装版tomcat会出现failed to install tomcat6 service ,check your setting and permissio的概率是非常低的,但是最近楼主就老出现 ...

  6. ubuntu安装scala详细教程

    ubuntu14 安装scala详细教程 1.下载scala压缩包 http://www.scala-lang.org/download/ 2.建立目录,解压文件到所建立目录 $ sudo mkdir ...

  7. DevExpress 控件使用技巧

    DevExpress是非常主流的.NET控件,眼下全世界和中国都用非常多用户使用,只是因为是英文版,初次接触的同学可能会认为困难.这里就总结DevExpress常见的10个使用技巧. 1.TextEd ...

  8. iOS-setNeedsLayout等布局方法

    列举下iOS layout的相关方法: layoutSubviews layoutIfNeeded setNeedsLayout setNeedsDisplay drawRect sizeThatFi ...

  9. ICE新手入门版

    1.ICE是什么?  网络通信引擎ICE(Internet Communications Engine)是Zero C公司的分布式系统开发专家实现的一种新的高性能的面向对象中间件平台.从根本上说, I ...

  10. bootstrap Table API和一些简单使用方法

    官网: http://bootstrap-table.wenzhixin.net.cn/zh-cn/documentation/ 后端分页问题:后端返回”rows”.“”total,这样才能重新赋值 ...