Mex

Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 3056    Accepted Submission(s): 1006

Problem Description
Mex is a function on a set of integers, which is universally used for impartial game theorem. For a non-negative integer set S, mex(S) is defined as the least non-negative integer which is not appeared in S. Now our problem is about mex function on a sequence.

Consider a sequence of non-negative integers {ai}, we define mex(L,R) as the least non-negative integer which is not appeared in the continuous subsequence from aL to aR, inclusive. Now we want to calculate the sum of mex(L,R) for all 1 <= L <= R <= n.

 
Input
The input contains at most 20 test cases.
For each test case, the first line contains one integer n, denoting the length of sequence.
The next line contains n non-integers separated by space, denoting the sequence.
(1 <= n <= 200000, 0 <= ai <= 10^9)
The input ends with n = 0.
 
Output
For each test case, output one line containing a integer denoting the answer.
 
Sample Input
3
0 1 3
5
1 0 2 0 1
0
 
Sample Output
5
24

Hint

For the first test case:
mex(1,1)=1, mex(1,2)=2, mex(1,3)=2, mex(2,2)=0, mex(2,3)=0,mex(3,3)=0.
1 + 2 + 2 + 0 +0 +0 = 5.

 
Source
 
Recommend
liuyiding   |   We have carefully selected several similar problems for you:  6022 6021 6020 6019 6018 

 
 
 
题意:Mex(l,r) 求的是[l,r]区间内所有数的集合里没有出现过的最小的数字,即博弈里的mex。现在给出一个序列[1,n],求解所有$1 \le l \le r\le n$ 的[l,r]中的mex[l,r]的和。
 
 
 
  首先我们将区间右端点统一为k,用num[k]存k这个位置对应的数字。即我们处理到k这个端点时,我们处理的是所有$[l,k] (1 \le l \le k)$的mex。此时我们只需要for一遍然后对应处理k就行。
  那怎么加速k这个端点的处理呢? 我们用t[l] 表示[l,k] 中所有数的集合set从零开始连续的最大的数,即mex-1,那么假如我们的序列为6 0 3 2 0 1 0 ,处理到最后一个数k=7,对应的t为 3 3 3 2 1 1 0,可以看出t为一个非递减序列,因此我们用aft[o]存t中数字o连续序列的最后一个位置,例如aft[1]=6。
  我们可以将这个问题化为区间右端点扩张的问题,每次更新对应一些区间的右端点扩张。我们还用last[o]存数字o最后出现的位置。可以看出我们每到一个新端点k,它对应的数字为knum,影响的t区间为大于等于knum的数字所在的区间,准确的说是s大于等于knum并且aft[s]==aft[knum]的数字所在的区间,因为一旦aft[s]<aft[knum]那么限制他的右端点扩张的数字就不是knum了,而是大于knum的数字。所以我们需要更新这些数字所在区间右端点,并且从小到大更新,设更新的区间右端点最大值为maxn。由于这些数字区间右端点还受aft[knum-1]限制,初始maxn=aft[knum-1]。然后每个数字s的右端点最大值为min(aft[knum-1],last[knum],last[knum+1]......last[s])(最左端的端点限制扩张)。至此我们快速的更新t区间。另外我们用all存现在l∈[1,k] 所有[l,k]mex的和,那么每次更新右端点就需要给all加上更新的区间的长度作为扩张对mex的贡献。最后我们把所有的all加起来就是答案。
 #include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define clr(x) memset(x,0,sizeof(x))
#define LL long long
using namespace std;
int a[],aft[],last[];
LL ans,all;
int min(int a,int b)
{
return a<b?a:b;
}
int main()
{
int n,m,k,dk,maxn;
while(scanf("%d",&n)== && n!=)
{
ans=;
all=;
clr(last);
clr(aft);
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
if(a[i]>=n)
{
ans+=all;
continue;
}
last[a[i]]=i;
if(a[i]>)
{
maxn=aft[a[i]-];
}
else
{
maxn=i;
}
k=a[i];
dk=aft[k];
while(aft[k]==aft[k+])
{
maxn=min(maxn,last[k]);
if(maxn==dk)
break;
all+=(LL)(maxn-aft[k]);
aft[k]=maxn;
k++;
}
maxn=min(maxn,last[k]);
all+=(LL)(maxn-aft[k]);
aft[k]=maxn;
ans+=all;
}
printf("%lld\n",ans);
}
return ;
}
 

hdu 4747 Mex( 线段树? 不,区间处理就行(dp?))的更多相关文章

  1. hdu 4747 mex 线段树+思维

    http://acm.hdu.edu.cn/showproblem.php?pid=4747 题意: 我们定义mex(l,r)表示一个序列a[l]....a[r]中没有出现过得最小的非负整数, 然后我 ...

  2. HDU 4747 Mex ( 线段树好题 + 思路 )

    参考:http://www.cnblogs.com/oyking/p/3323306.html 相当不错的思路,膜拜之~ 个人理解改日补充. #include <cstdio> #incl ...

  3. Can you answer these queries? HDU - 4027 (线段树,区间开平方,区间求和)

    A lot of battleships of evil are arranged in a line before the battle. Our commander decides to use ...

  4. hdu 4747【线段树-成段更新】.cpp

    题意: 给出一个有n个数的数列,并定义mex(l, r)表示数列中第l个元素到第r个元素中第一个没有出现的最小非负整数. 求出这个数列中所有mex的值. 思路: 可以看出对于一个数列,mex(r, r ...

  5. HDU 1698 【线段树,区间修改 + 维护区间和】

    题目链接 HDU 1698 Problem Description: In the game of DotA, Pudge’s meat hook is actually the most horri ...

  6. HDU 2795 Billboard 线段树,区间最大值,单点更新

    Billboard Time Limit: 20000/8000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  7. HDU6447 YJJ's Salesman-2018CCPC网络赛-线段树求区间最值+离散化+dp

    目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:Portal传送门  原题目描述在最下面.  1e5个点,问 ...

  8. HDU 4747 Mex (2013杭州网络赛1010题,线段树)

    Mex Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  9. hdu 1556:Color the ball(线段树,区间更新,经典题)

    Color the ball Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

随机推荐

  1. 【BZOJ】1096 [ZJOI2007]仓库建设

    [算法]DP+斜率优化 [题解]状态转移方程:f[i]=min(f[j]+g(i+1,j-1))+c[i] 关键在于如何O(1)计算g(i+1,j-1). 推导过程:http://blog.csdn. ...

  2. poj 2000 Gold Coins

    题目链接:http://poj.org/problem?id=2000 题目大意:求N天得到多少个金币,第一天得到1个,第二.三天得到2个,第四.五.六天得到3个....以此类推,得到第N天的金币数. ...

  3. sqlmap参数说明

    --delay 设置每隔几秒测试一次注入 --safe-url 设置sqlmap要访问的正常url --safe-freq 设置每测试多少条注入语句后才去访问safe-url --code 设置能正常 ...

  4. Java面向对象的三个特征与含义

    封装 1.英文为 encapsulation,实现信息隐藏: 2.把同一类事物的特性归纳到一个类中(属性和行为),隐藏对象的内部实现: 继承 1.英文为 inheritance: 2.继承的过程,是从 ...

  5. openboot的项目

    http://docs.oracle.com/cd/E19201-01/821-0901-10/OK_OBP.html https://www.openfirmware.info/OpenBIOS h ...

  6. Oracle with重用子查询

    --with 重用子查询对于多次使用相同子查询的复杂查询语句来说,用户可能会将查询语句分成两条语句执行.第一条语句将子查询结果存放到临时表,第二条查询语句使用临时表处理数据.从 Oracle 9i 开 ...

  7. VMware无法识别USB设备

    VMware虚拟机开始还能识别USB设备/U盘,突然就不行了,在网上找了好久,提供的方法大致如下: 1.   首先Ctrl+R启动运行,输入services.msc,找到一个VMware USB dr ...

  8. Hierarchical Attention Based Semi-supervised Network Representation Learning

    Hierarchical Attention Based Semi-supervised Network Representation Learning 1. 任务 给定:节点信息网络 目标:为每个节 ...

  9. 使用cmd(黑窗口)敲命令使用远程数据库

    C:\Users\gzz>mysql -h 10.27.104.176 -u root -p mysql

  10. HDU-5384

    Danganronpa Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...