D. Valid Sets
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

As you know, an undirected connected graph with n nodes and n - 1 edges is called a tree. You are given an integer d and a tree consisting of n nodes. Each node i has a value ai associated with it.

We call a set S of tree nodes valid if following conditions are satisfied:

  1. S is non-empty.
  2. S is connected. In other words, if nodes u and v are in S, then all nodes lying on the simple path between u and v should also be presented in S.
  3. .

Your task is to count the number of valid sets. Since the result can be very large, you must print its remainder modulo 1000000007(109 + 7).

Input

The first line contains two space-separated integers d (0 ≤ d ≤ 2000) and n (1 ≤ n ≤ 2000).

The second line contains n space-separated positive integers a1, a2, ..., an(1 ≤ ai ≤ 2000).

Then the next n - 1 line each contain pair of integers u and v (1 ≤ u, v ≤ n) denoting that there is an edge between u and v. It is guaranteed that these edges form a tree.

Output

Print the number of valid sets modulo 1000000007.

Examples
input
  1. 1 4
    2 1 3 2
    1 2
    1 3
    3 4
output
  1. 8
input
  1. 0 3
    1 2 3
    1 2
    2 3
output
  1. 3
input
  1. 4 8
    7 8 7 5 4 6 4 10
    1 6
    1 2
    5 8
    1 3
    3 5
    6 7
    3 4
output
  1. 41
Note

In the first sample, there are exactly 8 valid sets: {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {3, 4} and {1, 3, 4}. Set {1, 2, 3, 4} is not valid, because the third condition isn't satisfied. Set {1, 4} satisfies the third condition, but conflicts with the second condition.

【题意】给你一棵树,每个节点都有一个 权值a[i],定义一种集合S,不为空,若u,v,属于S,则u->v路径上的所有的点都属于S,且集合中最大权值-最小权值<=d,求 这样的集合个数。

【分析】考虑算每一个节点的贡献。枚举每一个节点,使其成为这个集合的最小值,然后dfs,看他能走多远。dp[u]表示当前节点的子树能形成多少包括u的集合,则dp[u]=dp[u]*(dp[v]+1),v为u的儿子,+1是因为这个儿子形成的集合我可以不取。但是对于权值相同的节点可能形成 一些重复计算的集合,所以要标记一下。

  1. #include <bits/stdc++.h>
  2. #define inf 0x3f3f3f3f
  3. #define met(a,b) memset(a,b,sizeof a)
  4. #define pb push_back
  5. #define mp make_pair
  6. #define inf 0x3f3f3f3f
  7. using namespace std;
  8. typedef long long ll;
  9. const int N = 2e3+;;
  10. const int M = ;
  11. const int mod = 1e9+;
  12. const int mo=;
  13. const double pi= acos(-1.0);
  14. typedef pair<int,int>pii;
  15. int n,d;
  16. int a[N],vis[N][N];
  17. ll dp[N],ans;
  18. vector<int>edg[N];
  19. void dfs(int u,int fa,int rt){
  20. if(a[u]<a[rt]||a[u]-a[rt]>d)return;
  21. if(a[u]==a[rt]){
  22. if(vis[rt][u])return;
  23. else vis[u][rt]=vis[rt][u]=;
  24. }
  25. dp[u]=;
  26. for(int v : edg[u]){
  27. if(v==fa)continue;
  28. dfs(v,u,rt);
  29. dp[u]=(dp[u]*(dp[v]+))%mod;
  30. }
  31. }
  32. int main(){
  33. scanf("%d%d",&d,&n);
  34. for(int i=;i<=n;i++)scanf("%d",&a[i]);
  35. for(int i=,u,v;i<n;i++){
  36. scanf("%d%d",&u,&v);
  37. edg[u].pb(v);edg[v].pb(u);
  38. }
  39. for(int i=;i<=n;i++){
  40. met(dp,);
  41. dfs(i,,i);
  42. ans=(ans+dp[i])%mod;
  43. }
  44. printf("%lld\n",ans);
  45. return ;
  46. }

Codeforces Round #277 (Div. 2) D. Valid Sets (DP DFS 思维)的更多相关文章

  1. Codeforces Round #277 (Div. 2) D. Valid Sets DP

    D. Valid Sets   As you know, an undirected connected graph with n nodes and n - 1 edges is called a  ...

  2. Codeforces Round #277 (Div. 2) D. Valid Sets 暴力

    D. Valid Sets Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/486/problem ...

  3. Codeforces Round #277 (Div. 2)D(树形DP计数类)

    D. Valid Sets time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  4. Codeforces Round #538 (Div. 2)D(区间DP,思维)

    #include<bits/stdc++.h>using namespace std;int a[5007];int dp[5007][5007];int main(){    int n ...

  5. Codeforces Round #277 (Div. 2) 题解

    Codeforces Round #277 (Div. 2) A. Calculating Function time limit per test 1 second memory limit per ...

  6. 【codeforces】Codeforces Round #277 (Div. 2) 解读

    门户:Codeforces Round #277 (Div. 2) 486A. Calculating Function 裸公式= = #include <cstdio> #include ...

  7. 贪心+构造 Codeforces Round #277 (Div. 2) C. Palindrome Transformation

    题目传送门 /* 贪心+构造:因为是对称的,可以全都左一半考虑,过程很简单,但是能想到就很难了 */ /************************************************ ...

  8. Codeforces Round #556 (Div. 2) - C. Prefix Sum Primes(思维)

    Problem  Codeforces Round #556 (Div. 2) - D. Three Religions Time Limit: 1000 mSec Problem Descripti ...

  9. 套题 Codeforces Round #277 (Div. 2)

    A. Calculating Function 水题,分奇数偶数处理一下就好了 #include<stdio.h> #include<iostream> using names ...

随机推荐

  1. VirtualBox4.3.12 安装ubuntu 14.04 分辨率过小(600*480)问题的解决方法

    作为.net程序员,一直都跟windows系统打交道,在同事的影响下,今天安装了Ubuntu 14. 安装完系统就遇到了这个麻烦事,找了好久才解决,因此记录下来,或许对和我一样的Ubuntu新手有帮助 ...

  2. 【BZOJ2946】公共串 [SAM]

    公共串 Time Limit: 3 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 给出几个由小写字母构成的单词,求它们最 ...

  3. 9、MySQL常见的函数?

    请参考下面的博客文章: MySQL常见的函数

  4. 6、MySQL索引种类

    1.普通索引 这是最基本的索引,它没有任何限制,比如上文中为title字段创建的索引就是一个普通索引,MyIASM中默认的BTREE类型的索引,也是我们大多数情况下用到的索引. –直接创建索引 CRE ...

  5. highcharts 从后台动态改变数据

    //columnChart    图表对象,创建示例就展示了. var series = this.columnChart.series;                            whi ...

  6. LCD实验学习笔记(十):TFT LCD

    硬件组成: REGBANK是LCD控制寄存器组,含17个寄存器及一块256*16的调色板,用来设置参数. LCDCDMA中有两个FIFO,当FIFO空或数据减少到阈值,自动发起DMA传输,从内存获取图 ...

  7. peewee在flask中的配置

    # 原文:https://blog.csdn.net/mouday/article/details/85332510 Flask的钩子函数与peewee.InterfaceError: (0, '') ...

  8. net_dev_init

    Kernel: 4.12.6 网络设备初始化,主要包括初始化softnet_data,注册收发包软中断等: static int __init net_dev_init(void) { int i, ...

  9. CentOS在ssh下远程重装系统

    CentOS在ssh下远程重装系统 http://www.zxsdw.com/index.php/archives/913/ 国外VPS服务器一般都有控制面板,有很多种系统可自行安装,但国内有些IDC ...

  10. bzoj 1798 维护序列seq

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1798 题解: 高级一点的线段树,加上了区间乘法运算,则需要增加一个数组mulv记录乘的因数 ...