BZOJ 2157 旅游(树链剖分+线段树)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=2157
【题目大意】
支持修改边,链上查询最大值最小值总和,以及链上求相反数
【题解】
树链剖分,然后线段树维护线段操作即可。
【代码】
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int INF=~0U>>1;
const int N=20010,M=N<<2;
int a[N];
namespace Segment_Tree{
int tot;
struct node{int l,r,a,b,rev_tag,min_val,max_val,sum;}T[M];
void build(int,int);
void Initialize(int n){
tot=0;
build(1,n);
}
void addtag(int x){
T[x].sum=-T[x].sum;
T[x].max_val=-T[x].max_val;
T[x].min_val=-T[x].min_val;
swap(T[x].min_val,T[x].max_val);
T[x].rev_tag^=1;
}
void pb(int x){
if(T[x].rev_tag){
if(T[x].l)addtag(T[x].l);
if(T[x].r)addtag(T[x].r);
T[x].rev_tag^=1;
}
}
void up(int x){
T[x].sum=T[T[x].l].sum+T[T[x].r].sum;
T[x].max_val=max(T[T[x].l].max_val,T[T[x].r].max_val);
T[x].min_val=min(T[T[x].l].min_val,T[T[x].r].min_val);
}
void build(int l,int r){
int x=++tot;
T[x].a=l;T[x].b=r;T[x].rev_tag=T[x].l=T[x].r=0;
if(l==r){T[x].sum=T[x].min_val=T[x].max_val=a[l];return;}
int mid=(l+r)>>1;
T[x].l=tot+1;build(l,mid);
T[x].r=tot+1;build(mid+1,r);
up(x);
}
void change(int x,int pos,int p){
if(T[x].a==T[x].b){T[x].sum=T[x].min_val=T[x].max_val=p;return;}
if(T[x].rev_tag)pb(x);
int mid=(T[x].a+T[x].b)>>1;
if(mid>=pos&&T[x].l)change(T[x].l,pos,p);
if(mid<pos&&T[x].r)change(T[x].r,pos,p);
up(x);
}
void reverse(int x,int a,int b){
if(a<=T[x].a&&T[x].b<=b){addtag(x);return;}
if(T[x].rev_tag)pb(x); int mid=(T[x].a+T[x].b)>>1;
if(a<=mid)reverse(T[x].l,a,b);
if(b>mid)reverse(T[x].r,a,b);
up(x);
}
int query_sum(int x,int a,int b){
if(a<=T[x].a&&T[x].b<=b)return T[x].sum;
if(T[x].rev_tag)pb(x); int mid=(T[x].a+T[x].b)>>1,res=0;
if(a<=mid)res+=query_sum(T[x].l,a,b);
if(b>mid)res+=query_sum(T[x].r,a,b);
return res;
}
int query_min(int x,int a,int b){
//printf("%d %d %d\n",T[x].min_val,a,b);
if(a<=T[x].a&&T[x].b<=b)return T[x].min_val;
if(T[x].rev_tag)pb(x); int mid=(T[x].a+T[x].b)>>1,res=INF;
if(a<=mid)res=min(res,query_min(T[x].l,a,b));
if(b>mid)res=min(res,query_min(T[x].r,a,b));
return res;
}
int query_max(int x,int a,int b){
if(a<=T[x].a&&T[x].b<=b)return T[x].max_val;
if(T[x].rev_tag)pb(x); int mid=(T[x].a+T[x].b)>>1,res=-INF;
if(a<=mid)res=max(res,query_max(T[x].l,a,b));
if(b>mid)res=max(res,query_max(T[x].r,a,b));
return res;
}
}
namespace Tree_Chain_Subdivision{
int ed,root,d[N],v[N<<1],vis[N],f[N],g[N<<1];
int nxt[N<<1],size[N],son[N],st[N],en[N],dfn,top[N];
void add_edge(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
void dfs(int x){
size[x]=1;
for(int i=g[x];i;i=nxt[i])if(v[i]!=f[x]){
f[v[i]]=x,d[v[i]]=d[x]+1;
dfs(v[i]),size[x]+=size[v[i]];
if(size[v[i]]>size[son[x]])son[x]=v[i];
}
}
void dfs2(int x,int y){
if(x==-1)return;
st[x]=++dfn;top[x]=y;
if(son[x])dfs2(son[x],y);
for(int i=g[x];i;i=nxt[i])if(v[i]!=son[x]&&v[i]!=f[x])dfs2(v[i],v[i]);
en[x]=dfn;
}
// 查询x,y两点的lca
int lca(int x,int y){
for(;top[x]!=top[y];x=f[top[x]])if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
return d[x]<d[y]?x:y;
}
// x是y的祖先,查询x到y方向的第一个点
int lca2(int x,int y){
int t;
while(top[x]!=top[y])t=top[y],y=f[top[y]];
return x==y?t:son[x];
}
// 对x到y路径上的点取反操作
void reverse(int x,int y){
for(;top[x]!=top[y];x=f[top[x]]){
if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
Segment_Tree::reverse(1,st[top[x]],st[x]);
}if(d[x]<d[y]){int z=x;x=y;y=z;}
Segment_Tree::reverse(1,st[y]+1,st[x]);
}
// 查询x到y路径上的最小值
int query_min(int x,int y){
int res=INF;
for(;top[x]!=top[y];x=f[top[x]]){
if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
res=min(res,Segment_Tree::query_min(1,st[top[x]],st[x]));
}if(d[x]<d[y]){int z=x;x=y;y=z;}
res=min(res,Segment_Tree::query_min(1,st[y]+1,st[x]));
return res;
}
// 查询x到y路径上的最大值
int query_max(int x,int y){
int res=-INF;
for(;top[x]!=top[y];x=f[top[x]]){
if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
res=max(res,Segment_Tree::query_max(1,st[top[x]],st[x]));
}if(d[x]<d[y]){int z=x;x=y;y=z;}
res=max(res,Segment_Tree::query_max(1,st[y]+1,st[x]));
return res;
}
// 查询x到y路径上的总和
int query_sum(int x,int y){
int res=0;
for(;top[x]!=top[y];x=f[top[x]]){
if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
res=res+Segment_Tree::query_sum(1,st[top[x]],st[x]);
}if(d[x]<d[y]){int z=x;x=y;y=z;}
res=res+Segment_Tree::query_sum(1,st[y]+1,st[x]);
return res;
}
void Initialize(){
memset(g,dfn=ed=0,sizeof(g));
memset(v,0,sizeof(v));
memset(nxt,0,sizeof(nxt));
memset(son,-1,sizeof(son));
}
}
int n,m,e[N][3];
char op[5];
int main(){
scanf("%d",&n);
using namespace Tree_Chain_Subdivision;
Initialize();
for(int i=0;i<n-1;i++){
scanf("%d%d%d",&e[i][0],&e[i][1],&e[i][2]);
e[i][0]++; e[i][1]++;
add_edge(e[i][0],e[i][1]);
add_edge(e[i][1],e[i][0]);
}dfs(1);dfs2(1,1);
for(int i=0;i<n-1;i++){
if(d[e[i][0]]>d[e[i][1]])swap(e[i][0],e[i][1]);
a[st[e[i][1]]]=e[i][2];
}
Segment_Tree::Initialize(n);
scanf("%d",&m);
while(m--){
scanf("%s",op);
if(op[0]=='C'){
int x,y;
scanf("%d%d",&x,&y);
Segment_Tree::change(1,st[e[x-1][1]],y);
}
else if(op[0]=='N'){
int x,y;
scanf("%d%d",&x,&y);
Tree_Chain_Subdivision::reverse(x+1,y+1);
}
else if(op[0]=='S'){
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",Tree_Chain_Subdivision::query_sum(x+1,y+1));
}
else if(op[1]=='I'){
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",Tree_Chain_Subdivision::query_min(x+1,y+1));
}
else{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",Tree_Chain_Subdivision::query_max(x+1,y+1));
}
}return 0;
}
BZOJ 2157 旅游(树链剖分+线段树)的更多相关文章
- bzoj 2157: 旅游【树链剖分+线段树】
裸的树链剖分+线段树 但是要注意一个地方--我WA了好几次才发现取完相反数之后max值和min值是要交换的-- #include<iostream> #include<cstdio& ...
- BZOJ2157旅游——树链剖分+线段树
题目描述 Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但又为了节约成本,T 城的任意两个景点之间有且只有一条路 ...
- BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )
BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...
- BZOJ.1036 [ZJOI2008]树的统计Count ( 点权树链剖分 线段树维护和与最值)
BZOJ.1036 [ZJOI2008]树的统计Count (树链剖分 线段树维护和与最值) 题意分析 (题目图片来自于 这里) 第一道树链剖分的题目,谈一下自己的理解. 树链剖分能解决的问题是,题目 ...
- BZOJ 3672[NOI2014]购票(树链剖分+线段树维护凸包+斜率优化) + BZOJ 2402 陶陶的难题II (树链剖分+线段树维护凸包+分数规划+斜率优化)
前言 刚开始看着两道题感觉头皮发麻,后来看看题解,发现挺好理解,只是代码有点长. BZOJ 3672[NOI2014]购票 中文题面,题意略: BZOJ 3672[NOI2014]购票 设f(i)f( ...
- bzoj 4196 [Noi2015]软件包管理器 (树链剖分+线段树)
4196: [Noi2015]软件包管理器 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2852 Solved: 1668[Submit][Sta ...
- BZOJ 3589 动态树 (树链剖分+线段树)
前言 众所周知,90%90\%90%的题目与解法毫无关系. 题意 有一棵有根树,两种操作.一种是子树内每一个点的权值加上一个同一个数,另一种是查询多条路径的并的点权之和. 分析 很容易看出是树链剖分+ ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- BZOJ2243 (树链剖分+线段树)
Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...
随机推荐
- Tomcat8利用Redis配置Session共享
同一个应用在运行多个tomcat实例的时候,经常需要共享Session.tomcat配置共享session有多种方式 1.利用tomcat自身集群特性进行配置: 2.利用Memcache第三方缓存进行 ...
- Linux命令--hostname和uname
hostname命令 hostname命令用于显示和设置系统的主机名称.环境变量HOSTNAME也保存了当前的主机名.在使用hostname命令设置主机名后,系统并不会永久保存新的主机名,重新启动机器 ...
- 集合框架源码学习之HashMap(JDK1.8)
目录: 0-1. 简介 0-2. 内部结构分析 0-2-1. JDK18之前 0-2-2. JDK18之后 0-3. LinkedList源码分析 0-3-1. 构造方法 0-3-2. put方法 0 ...
- Oracle 合并 merger into
merge into copy_emp1 c using employees e on (c.employee_id=e.employee_id)when matched then update ...
- Linux配置Tomcat
系统:Ubuntu,Tomcat:apache-tomcat-8.5.23.tar.gz 1,找到apache-tomcat-8.5.23.tar.gz,复制到 /usr/local root@ubu ...
- atom编辑器插件atom-ternjs
这是官方文档:https://atom.io/packages/atom-ternjs 官方介绍: JavaScript code intelligence for atom with Tern. A ...
- VMware无法识别USB设备
VMware虚拟机开始还能识别USB设备/U盘,突然就不行了,在网上找了好久,提供的方法大致如下: 1. 首先Ctrl+R启动运行,输入services.msc,找到一个VMware USB dr ...
- leetcode 121 122 123 . Best Time to Buy and Sell Stock
121题目描述: 解题:记录浏览过的天中最低的价格,并不断更新可能的最大收益,只允许买卖一次的动态规划思想. class Solution { public: int maxProfit(vector ...
- 用指定jdk执行jar包
在运行jar包前执行以下命令,作用是在当前命令行窗口作用域内修改环境变量: export JAVA_HOME=/root/jiabao.gao/Hbase2Redis-1.0.0-SNAPSHOT/j ...
- HDU-5317
RGCDQ Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...