BZOJ 2157 旅游(树链剖分+线段树)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=2157
【题目大意】
支持修改边,链上查询最大值最小值总和,以及链上求相反数
【题解】
树链剖分,然后线段树维护线段操作即可。
【代码】
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int INF=~0U>>1;
const int N=20010,M=N<<2;
int a[N];
namespace Segment_Tree{
int tot;
struct node{int l,r,a,b,rev_tag,min_val,max_val,sum;}T[M];
void build(int,int);
void Initialize(int n){
tot=0;
build(1,n);
}
void addtag(int x){
T[x].sum=-T[x].sum;
T[x].max_val=-T[x].max_val;
T[x].min_val=-T[x].min_val;
swap(T[x].min_val,T[x].max_val);
T[x].rev_tag^=1;
}
void pb(int x){
if(T[x].rev_tag){
if(T[x].l)addtag(T[x].l);
if(T[x].r)addtag(T[x].r);
T[x].rev_tag^=1;
}
}
void up(int x){
T[x].sum=T[T[x].l].sum+T[T[x].r].sum;
T[x].max_val=max(T[T[x].l].max_val,T[T[x].r].max_val);
T[x].min_val=min(T[T[x].l].min_val,T[T[x].r].min_val);
}
void build(int l,int r){
int x=++tot;
T[x].a=l;T[x].b=r;T[x].rev_tag=T[x].l=T[x].r=0;
if(l==r){T[x].sum=T[x].min_val=T[x].max_val=a[l];return;}
int mid=(l+r)>>1;
T[x].l=tot+1;build(l,mid);
T[x].r=tot+1;build(mid+1,r);
up(x);
}
void change(int x,int pos,int p){
if(T[x].a==T[x].b){T[x].sum=T[x].min_val=T[x].max_val=p;return;}
if(T[x].rev_tag)pb(x);
int mid=(T[x].a+T[x].b)>>1;
if(mid>=pos&&T[x].l)change(T[x].l,pos,p);
if(mid<pos&&T[x].r)change(T[x].r,pos,p);
up(x);
}
void reverse(int x,int a,int b){
if(a<=T[x].a&&T[x].b<=b){addtag(x);return;}
if(T[x].rev_tag)pb(x); int mid=(T[x].a+T[x].b)>>1;
if(a<=mid)reverse(T[x].l,a,b);
if(b>mid)reverse(T[x].r,a,b);
up(x);
}
int query_sum(int x,int a,int b){
if(a<=T[x].a&&T[x].b<=b)return T[x].sum;
if(T[x].rev_tag)pb(x); int mid=(T[x].a+T[x].b)>>1,res=0;
if(a<=mid)res+=query_sum(T[x].l,a,b);
if(b>mid)res+=query_sum(T[x].r,a,b);
return res;
}
int query_min(int x,int a,int b){
//printf("%d %d %d\n",T[x].min_val,a,b);
if(a<=T[x].a&&T[x].b<=b)return T[x].min_val;
if(T[x].rev_tag)pb(x); int mid=(T[x].a+T[x].b)>>1,res=INF;
if(a<=mid)res=min(res,query_min(T[x].l,a,b));
if(b>mid)res=min(res,query_min(T[x].r,a,b));
return res;
}
int query_max(int x,int a,int b){
if(a<=T[x].a&&T[x].b<=b)return T[x].max_val;
if(T[x].rev_tag)pb(x); int mid=(T[x].a+T[x].b)>>1,res=-INF;
if(a<=mid)res=max(res,query_max(T[x].l,a,b));
if(b>mid)res=max(res,query_max(T[x].r,a,b));
return res;
}
}
namespace Tree_Chain_Subdivision{
int ed,root,d[N],v[N<<1],vis[N],f[N],g[N<<1];
int nxt[N<<1],size[N],son[N],st[N],en[N],dfn,top[N];
void add_edge(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
void dfs(int x){
size[x]=1;
for(int i=g[x];i;i=nxt[i])if(v[i]!=f[x]){
f[v[i]]=x,d[v[i]]=d[x]+1;
dfs(v[i]),size[x]+=size[v[i]];
if(size[v[i]]>size[son[x]])son[x]=v[i];
}
}
void dfs2(int x,int y){
if(x==-1)return;
st[x]=++dfn;top[x]=y;
if(son[x])dfs2(son[x],y);
for(int i=g[x];i;i=nxt[i])if(v[i]!=son[x]&&v[i]!=f[x])dfs2(v[i],v[i]);
en[x]=dfn;
}
// 查询x,y两点的lca
int lca(int x,int y){
for(;top[x]!=top[y];x=f[top[x]])if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
return d[x]<d[y]?x:y;
}
// x是y的祖先,查询x到y方向的第一个点
int lca2(int x,int y){
int t;
while(top[x]!=top[y])t=top[y],y=f[top[y]];
return x==y?t:son[x];
}
// 对x到y路径上的点取反操作
void reverse(int x,int y){
for(;top[x]!=top[y];x=f[top[x]]){
if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
Segment_Tree::reverse(1,st[top[x]],st[x]);
}if(d[x]<d[y]){int z=x;x=y;y=z;}
Segment_Tree::reverse(1,st[y]+1,st[x]);
}
// 查询x到y路径上的最小值
int query_min(int x,int y){
int res=INF;
for(;top[x]!=top[y];x=f[top[x]]){
if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
res=min(res,Segment_Tree::query_min(1,st[top[x]],st[x]));
}if(d[x]<d[y]){int z=x;x=y;y=z;}
res=min(res,Segment_Tree::query_min(1,st[y]+1,st[x]));
return res;
}
// 查询x到y路径上的最大值
int query_max(int x,int y){
int res=-INF;
for(;top[x]!=top[y];x=f[top[x]]){
if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
res=max(res,Segment_Tree::query_max(1,st[top[x]],st[x]));
}if(d[x]<d[y]){int z=x;x=y;y=z;}
res=max(res,Segment_Tree::query_max(1,st[y]+1,st[x]));
return res;
}
// 查询x到y路径上的总和
int query_sum(int x,int y){
int res=0;
for(;top[x]!=top[y];x=f[top[x]]){
if(d[top[x]]<d[top[y]]){int z=x;x=y;y=z;}
res=res+Segment_Tree::query_sum(1,st[top[x]],st[x]);
}if(d[x]<d[y]){int z=x;x=y;y=z;}
res=res+Segment_Tree::query_sum(1,st[y]+1,st[x]);
return res;
}
void Initialize(){
memset(g,dfn=ed=0,sizeof(g));
memset(v,0,sizeof(v));
memset(nxt,0,sizeof(nxt));
memset(son,-1,sizeof(son));
}
}
int n,m,e[N][3];
char op[5];
int main(){
scanf("%d",&n);
using namespace Tree_Chain_Subdivision;
Initialize();
for(int i=0;i<n-1;i++){
scanf("%d%d%d",&e[i][0],&e[i][1],&e[i][2]);
e[i][0]++; e[i][1]++;
add_edge(e[i][0],e[i][1]);
add_edge(e[i][1],e[i][0]);
}dfs(1);dfs2(1,1);
for(int i=0;i<n-1;i++){
if(d[e[i][0]]>d[e[i][1]])swap(e[i][0],e[i][1]);
a[st[e[i][1]]]=e[i][2];
}
Segment_Tree::Initialize(n);
scanf("%d",&m);
while(m--){
scanf("%s",op);
if(op[0]=='C'){
int x,y;
scanf("%d%d",&x,&y);
Segment_Tree::change(1,st[e[x-1][1]],y);
}
else if(op[0]=='N'){
int x,y;
scanf("%d%d",&x,&y);
Tree_Chain_Subdivision::reverse(x+1,y+1);
}
else if(op[0]=='S'){
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",Tree_Chain_Subdivision::query_sum(x+1,y+1));
}
else if(op[1]=='I'){
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",Tree_Chain_Subdivision::query_min(x+1,y+1));
}
else{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",Tree_Chain_Subdivision::query_max(x+1,y+1));
}
}return 0;
}
BZOJ 2157 旅游(树链剖分+线段树)的更多相关文章
- bzoj 2157: 旅游【树链剖分+线段树】
裸的树链剖分+线段树 但是要注意一个地方--我WA了好几次才发现取完相反数之后max值和min值是要交换的-- #include<iostream> #include<cstdio& ...
- BZOJ2157旅游——树链剖分+线段树
题目描述 Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但又为了节约成本,T 城的任意两个景点之间有且只有一条路 ...
- BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )
BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...
- BZOJ.1036 [ZJOI2008]树的统计Count ( 点权树链剖分 线段树维护和与最值)
BZOJ.1036 [ZJOI2008]树的统计Count (树链剖分 线段树维护和与最值) 题意分析 (题目图片来自于 这里) 第一道树链剖分的题目,谈一下自己的理解. 树链剖分能解决的问题是,题目 ...
- BZOJ 3672[NOI2014]购票(树链剖分+线段树维护凸包+斜率优化) + BZOJ 2402 陶陶的难题II (树链剖分+线段树维护凸包+分数规划+斜率优化)
前言 刚开始看着两道题感觉头皮发麻,后来看看题解,发现挺好理解,只是代码有点长. BZOJ 3672[NOI2014]购票 中文题面,题意略: BZOJ 3672[NOI2014]购票 设f(i)f( ...
- bzoj 4196 [Noi2015]软件包管理器 (树链剖分+线段树)
4196: [Noi2015]软件包管理器 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2852 Solved: 1668[Submit][Sta ...
- BZOJ 3589 动态树 (树链剖分+线段树)
前言 众所周知,90%90\%90%的题目与解法毫无关系. 题意 有一棵有根树,两种操作.一种是子树内每一个点的权值加上一个同一个数,另一种是查询多条路径的并的点权之和. 分析 很容易看出是树链剖分+ ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- BZOJ2243 (树链剖分+线段树)
Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...
随机推荐
- DotNETCore 学习笔记 WebApi
API Description Request body Response body GET /api/todo Get all to-do items None Array of to-do ite ...
- 线程,JSP,Servlet面试题
线程编程方面 60.java中有几种方法可以实现一个线程?用什么关键字修饰同步方法? stop()和suspend()方法为何不推荐使用? 答:有两种实现方法,分别是继承Thread类与实现Runna ...
- 通过JDBC连接HiveServer2
如果通过JDBC连接HiveServer2时提示:User: hive is not allowed to impersonate hive,需要在core-site.xml中新增如下配置: hado ...
- 从零开始PHP攻略(000)——关于WAMPServer集成环境
Apache.PHP和MySQL都可以用于多种操作系统和Web服务器的组合.本篇介绍在Windows下用WampServer环境包来搭建本地php环境. W:windows A:Apache M:My ...
- 移动测试===利用adb命令查看apk文件包名的一些方法
前提是已经下载android SDK并配好环境变量! 在控制台输入命令$adb shell pm 可以看到adb shell pm的相关用法,详细信息请自己看输出 要看一个apk文件的相关信息最简单实 ...
- codevs 3287 货车运输 NOIP2013提高组
题目链接:http://codevs.cn/problem/3287/ 题解: 和bzoj3732一毛一样,只不过是找最大生成树和最小值罢了,具体参见我的bzoj3732的博客 #include< ...
- 基础的语法知识(static关键字)
1.C++中的局部变量.全局变量.局部静态变量.全局静态变量的区别 局部变量(Local variables)与 全局变量: 在子程序或代码块中定义的变量称为局部变量,在程序的一开始定义的变量称为全局 ...
- VPS性能综合测试(6):UnixBench跑分工具测试
测试时间可能会比较长,请耐心等待.最后UnixBench会详细列出各个测试项目的得分情况,以及VPS性能的综合跑分结果 UinxBench 的使用 使用方法如下: Run [ -q | -v ] [- ...
- 微信小程序滚动条返回顶部
scroll-view(可滚动视图区域): 使用竖向滚动时,需要给<scroll-view/>一个固定高度,通过 WXSS 设置 height,将scroll-y属性设置为true,将en ...
- php5和php7的异常处理机制 ----thinkphp5 异常处理的分析
1.php异常和错误 在其他语言中,异常和错误是有区别的,但是PHP,遇见自身错误时,会触发一个错误,而不是跑出异常.并且,php大部分情况,都会触发错误,终止程序执行,在php5中,try catc ...