bzoj 4540: [Hnoi2016]序列
Description
给定长度为n的序列:a1,a2,…,an,记为a[1:n]。类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-
1,ar。若1≤l≤s≤t≤r≤n,则称a[s:t]是a[l:r]的子序列。现在有q个询问,每个询问给定两个数l和r,1≤l≤r
≤n,求a[l:r]的不同子序列的最小值之和。例如,给定序列5,2,4,1,3,询问给定的两个数为1和3,那么a[1:3]有
6个子序列a[1:1],a[2:2],a[3:3],a[1:2],a[2:3],a[1:3],这6个子序列的最小值之和为5+2+4+2+2+2=17。
Solution
我们设 \(f[i][j]\) 表示区间 \([i,j]\) 的最小值,那么答案就是 \(\sum\sum f[i][j]\)
我们把 \(f[i][j]\) 画成一个矩形,例如:
7
5 4
3 3 3
3 3 2 2
那么如果我们枚举了一个右端点 \(j\),那么就相当于是求第 \(j\) 行的和
从这一行到下一行实际上就是先平移下来,然后再把新加进来的元素做一次区间覆盖
设 \(L[i]\) 为 \(i\) 作为最小值能够往左延伸到的最远的位置,那么就是对 \([L[i],i]\) 做一个区间覆盖,并且我们还要维护一个区间和,由于还枚举了右端点,所以还要维护历史信息
那么线段树分别维护 \(s,v,l\) 表示,历史的区间和的总和,当前的区间和,区间长度
并且维护四个标记 \(a,b,c,d\),表示标记生效后, \(v=v*a+b*l\),\(s=s+v*c+d*l\)
标记的合并有一些讨论,见代码
扫描线+线段树维护这个东西即可
#include<bits/stdc++.h>
#define ls (o<<1)
#define rs (o<<1|1)
using namespace std;
typedef long long ll;
const int N=1e5+10;
inline int gi(){
register int str=0;register char ch=getchar();bool f=0;
while(ch>'9' || ch<'0'){if(ch=='-')f=1;ch=getchar();}
while(ch>='0' && ch<='9')str=(str<<1)+(str<<3)+ch-48,ch=getchar();
return f?-str:str;
}
int n,a[N],Q,cnt=0,L[N],st[N],top=0;ll ans[N];
struct Qu{int x,l,r,k,id;}q[N*2];
inline bool comp(const Qu &i,const Qu &j){return i.x<j.x;}
struct tag{
ll a,b,c,d;
tag(){a=1;b=0;c=0;d=0;}
tag(ll _a,ll _b,ll _c,ll _d){a=_a;b=_b;c=_c;d=_d;}
tag operator +(tag &p){return tag(a*p.a,b*p.a+p.b,a*p.c+c,d+p.d+b*p.c);}
};
struct node{
ll v,s,l;tag t;
node(){v=s=l=0;t=tag();}
node(ll _v,ll _s,ll _l,tag _t){v=_v;s=_s;l=_l;t=_t;}
node operator +(const node &p){return node(v+p.v,s+p.s,l+p.l,tag());}
inline void add(tag x){s+=v*x.c+l*x.d;v=x.a*v+x.b*l;t=t+x;}
}tr[N*4];
inline void build(int l,int r,int o){
if(l==r){tr[o]=node();tr[o].l=1;return ;}
int mid=(l+r)>>1;
build(l,mid,ls);build(mid+1,r,rs);
tr[o]=tr[ls]+tr[rs];
}
inline void pushdown(int o){
tag t=tr[o].t;
if(t.a==1 && !t.b && !t.c && !t.d)return ;
tr[o].t=tag();tr[ls].add(t);tr[rs].add(t);
}
inline void Modify(int l,int r,int o,int sa,int se,tag t){
if(sa<=l && r<=se){tr[o].add(t);return ;}
pushdown(o);
int mid=(l+r)>>1;
if(se<=mid)Modify(l,mid,ls,sa,se,t);
else if(sa>mid)Modify(mid+1,r,rs,sa,se,t);
else Modify(l,mid,ls,sa,mid,t),Modify(mid+1,r,rs,mid+1,se,t);
tr[o]=tr[ls]+tr[rs];
}
inline node qry(int l,int r,int o,int sa,int se){
if(sa<=l && r<=se)return tr[o];
pushdown(o);
int mid=(l+r)>>1;node ret;
if(se<=mid)ret=qry(l,mid,ls,sa,se);
else if(sa>mid)ret=qry(mid+1,r,rs,sa,se);
else ret=qry(l,mid,ls,sa,mid)+qry(mid+1,r,rs,mid+1,se);
tr[o]=tr[ls]+tr[rs];
return ret;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n>>Q;
for(int i=1;i<=n;i++)a[i]=gi();
for(int i=1;i<=n;i++){
while(top && a[i]<a[st[top]])top--;
L[i]=st[top]+1;st[++top]=i;
}
int x,y;
for(int i=1;i<=Q;i++){
x=gi();y=gi();
q[++cnt]=(Qu){y,x,y,1,i};
}
sort(q+1,q+cnt+1,comp);
build(1,n,1);
for(int i=1,j=1;i<=n;i++){
Modify(1,n,1,L[i],i,tag(0,a[i],0,0));tr[1].add(tag(1,0,1,0));
while(j<=cnt && q[j].x<i)j++;
for(;j<=cnt && q[j].x==i;j++)
ans[q[j].id]+=qry(1,n,1,q[j].l,q[j].r).s;
}
for(int i=1;i<=Q;i++)printf("%lld\n",ans[i]);
return 0;
}
bzoj 4540: [Hnoi2016]序列的更多相关文章
- BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]
4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...
- BZOJ 4540 [Hnoi2016]序列 | 莫队 详细题解
传送门 BZOJ 4540 题解 --怎么说呢--本来想写线段树+矩阵乘法的-- --但是嘛--yali的机房太热了--困--写不出来-- 于是弃疗,写起了莫队.(但是我连莫队都想不出来!) 首先用单 ...
- BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)
BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...
- bzoj 4540: [Hnoi2016]序列 莫队
题目: 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- 1,ar.若1≤l≤s≤t≤r≤n,则称a[s:t]是a ...
- BZOJ 4540 [Hnoi2016]序列 (单调栈 + ST表 + 莫队算法)
题目链接 BZOJ4540 考虑莫队算法. 这题难在$[l, r]$到$[l, r+1]$的转移. 根据莫队算法的原理,这个时候答案应该加上 $cal(l, r+1) + cal(l+1, r+1) ...
- bzoj 4540: [Hnoi2016]序列【单调栈+线段树】
强烈安利:http://blog.csdn.net/qq_34637390/article/details/51313126 这篇讲标记讲的非常好,这个标记非常神奇-- 首先last表示扫描到last ...
- 4540: [Hnoi2016]序列
4540: [Hnoi2016]序列 https://www.lydsy.com/JudgeOnline/problem.php?id=4540 分析: 莫队+RMQ+单调栈. 考虑加入一个点后,区间 ...
- [BZOJ4540][HNOI2016]序列 莫队
4540: [Hnoi2016]序列 Time Limit: 20 Sec Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n ...
- [Bzoj4540][Hnoi2016] 序列(莫队 + ST表 + 单调队列)
4540: [Hnoi2016]序列 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1567 Solved: 718[Submit][Status] ...
随机推荐
- c# mvc 第三方定时 FluentScheduler
开头无关内容,可略过: 最近工作和生活都忙的不可开交了. 工作和生活上都不太顺利,5月底出了车祸回家养伤.6月忙着今年的大事. 给自己鼓鼓励吧 最近重拾nodejs和python,也给自己动力,继续学 ...
- 使用SQL Delta.v5.1.1.98.破解版同步数据结构
概述 本篇文章主要介绍SQL DELTA的简单使用.为了能够更加明了的说明其功能,本文将通过实际项目中的案例加以介绍. 1. SQLDELTA简介 SQLDELTA是一款便捷实用的数据库管理工具.使用 ...
- django fileup-load
文件上传 使用form表单类的上传 forms.py from django import forms class UploadFileForm(forms.Form): title = forms. ...
- Windows系统下安装 CMake
在安装caffe框架的时候需要用到cmake,特将cmake的安装总结如下: 1 什么是cmake CMake是一个跨平台的编译(Build)工具,可以用简单的语句来描述所有平台的编译过程.CMake ...
- [转]解读Unity中的CG编写Shader系列4——unity中的圆角矩形shader
上篇文章中我们掌握了表面剔除和剪裁模式这篇文章将利用这些知识实现一个简单的,但是又很常用的例子:把一张图片做成圆角矩形 例3:圆角矩形Shader好吧我承认在做这个例子的时候走了不少弯路,由于本人对矩 ...
- mysql实际碰到问题汇总
问题1:SQLSTATE[42000]: Syntax error or access violation: 1055 Expression #2 of SELECT list is not in G ...
- spring-第二章-AOP
一,回顾 1.控制反转(IOC) 以前创建对象,由我们自己决定,现在我们把管理对象的声明周期权力交给spring; 2.依赖注入(DI) A对象需要B对象的支持,spring就把B注入给A,那么A就拥 ...
- “全栈2019”Java第二十八章:数组详解(上篇)
难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...
- TCP 的保活定时器
引言 可以没有任何数据流过一个空闲的 TCP 连接. 这意味着我们可以启动一个客户与服务器建 立一个连接,然后离去数小时.数天.数个星期或者数月,而连接依然保持.中间路由器可以崩溃和重启,电话线可以被 ...
- 两种 js下载文件的步骤
----------------------------------引用地址链接------------------------------------------------- http://www ...