bzoj 4540: [Hnoi2016]序列
Description
给定长度为n的序列:a1,a2,…,an,记为a[1:n]。类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-
1,ar。若1≤l≤s≤t≤r≤n,则称a[s:t]是a[l:r]的子序列。现在有q个询问,每个询问给定两个数l和r,1≤l≤r
≤n,求a[l:r]的不同子序列的最小值之和。例如,给定序列5,2,4,1,3,询问给定的两个数为1和3,那么a[1:3]有
6个子序列a[1:1],a[2:2],a[3:3],a[1:2],a[2:3],a[1:3],这6个子序列的最小值之和为5+2+4+2+2+2=17。
Solution
我们设 \(f[i][j]\) 表示区间 \([i,j]\) 的最小值,那么答案就是 \(\sum\sum f[i][j]\)
我们把 \(f[i][j]\) 画成一个矩形,例如:
7
5 4
3 3 3
3 3 2 2
那么如果我们枚举了一个右端点 \(j\),那么就相当于是求第 \(j\) 行的和
从这一行到下一行实际上就是先平移下来,然后再把新加进来的元素做一次区间覆盖
设 \(L[i]\) 为 \(i\) 作为最小值能够往左延伸到的最远的位置,那么就是对 \([L[i],i]\) 做一个区间覆盖,并且我们还要维护一个区间和,由于还枚举了右端点,所以还要维护历史信息
那么线段树分别维护 \(s,v,l\) 表示,历史的区间和的总和,当前的区间和,区间长度
并且维护四个标记 \(a,b,c,d\),表示标记生效后, \(v=v*a+b*l\),\(s=s+v*c+d*l\)
标记的合并有一些讨论,见代码
扫描线+线段树维护这个东西即可
#include<bits/stdc++.h>
#define ls (o<<1)
#define rs (o<<1|1)
using namespace std;
typedef long long ll;
const int N=1e5+10;
inline int gi(){
register int str=0;register char ch=getchar();bool f=0;
while(ch>'9' || ch<'0'){if(ch=='-')f=1;ch=getchar();}
while(ch>='0' && ch<='9')str=(str<<1)+(str<<3)+ch-48,ch=getchar();
return f?-str:str;
}
int n,a[N],Q,cnt=0,L[N],st[N],top=0;ll ans[N];
struct Qu{int x,l,r,k,id;}q[N*2];
inline bool comp(const Qu &i,const Qu &j){return i.x<j.x;}
struct tag{
ll a,b,c,d;
tag(){a=1;b=0;c=0;d=0;}
tag(ll _a,ll _b,ll _c,ll _d){a=_a;b=_b;c=_c;d=_d;}
tag operator +(tag &p){return tag(a*p.a,b*p.a+p.b,a*p.c+c,d+p.d+b*p.c);}
};
struct node{
ll v,s,l;tag t;
node(){v=s=l=0;t=tag();}
node(ll _v,ll _s,ll _l,tag _t){v=_v;s=_s;l=_l;t=_t;}
node operator +(const node &p){return node(v+p.v,s+p.s,l+p.l,tag());}
inline void add(tag x){s+=v*x.c+l*x.d;v=x.a*v+x.b*l;t=t+x;}
}tr[N*4];
inline void build(int l,int r,int o){
if(l==r){tr[o]=node();tr[o].l=1;return ;}
int mid=(l+r)>>1;
build(l,mid,ls);build(mid+1,r,rs);
tr[o]=tr[ls]+tr[rs];
}
inline void pushdown(int o){
tag t=tr[o].t;
if(t.a==1 && !t.b && !t.c && !t.d)return ;
tr[o].t=tag();tr[ls].add(t);tr[rs].add(t);
}
inline void Modify(int l,int r,int o,int sa,int se,tag t){
if(sa<=l && r<=se){tr[o].add(t);return ;}
pushdown(o);
int mid=(l+r)>>1;
if(se<=mid)Modify(l,mid,ls,sa,se,t);
else if(sa>mid)Modify(mid+1,r,rs,sa,se,t);
else Modify(l,mid,ls,sa,mid,t),Modify(mid+1,r,rs,mid+1,se,t);
tr[o]=tr[ls]+tr[rs];
}
inline node qry(int l,int r,int o,int sa,int se){
if(sa<=l && r<=se)return tr[o];
pushdown(o);
int mid=(l+r)>>1;node ret;
if(se<=mid)ret=qry(l,mid,ls,sa,se);
else if(sa>mid)ret=qry(mid+1,r,rs,sa,se);
else ret=qry(l,mid,ls,sa,mid)+qry(mid+1,r,rs,mid+1,se);
tr[o]=tr[ls]+tr[rs];
return ret;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n>>Q;
for(int i=1;i<=n;i++)a[i]=gi();
for(int i=1;i<=n;i++){
while(top && a[i]<a[st[top]])top--;
L[i]=st[top]+1;st[++top]=i;
}
int x,y;
for(int i=1;i<=Q;i++){
x=gi();y=gi();
q[++cnt]=(Qu){y,x,y,1,i};
}
sort(q+1,q+cnt+1,comp);
build(1,n,1);
for(int i=1,j=1;i<=n;i++){
Modify(1,n,1,L[i],i,tag(0,a[i],0,0));tr[1].add(tag(1,0,1,0));
while(j<=cnt && q[j].x<i)j++;
for(;j<=cnt && q[j].x==i;j++)
ans[q[j].id]+=qry(1,n,1,q[j].l,q[j].r).s;
}
for(int i=1;i<=Q;i++)printf("%lld\n",ans[i]);
return 0;
}
bzoj 4540: [Hnoi2016]序列的更多相关文章
- BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]
4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...
- BZOJ 4540 [Hnoi2016]序列 | 莫队 详细题解
传送门 BZOJ 4540 题解 --怎么说呢--本来想写线段树+矩阵乘法的-- --但是嘛--yali的机房太热了--困--写不出来-- 于是弃疗,写起了莫队.(但是我连莫队都想不出来!) 首先用单 ...
- BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)
BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...
- bzoj 4540: [Hnoi2016]序列 莫队
题目: 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- 1,ar.若1≤l≤s≤t≤r≤n,则称a[s:t]是a ...
- BZOJ 4540 [Hnoi2016]序列 (单调栈 + ST表 + 莫队算法)
题目链接 BZOJ4540 考虑莫队算法. 这题难在$[l, r]$到$[l, r+1]$的转移. 根据莫队算法的原理,这个时候答案应该加上 $cal(l, r+1) + cal(l+1, r+1) ...
- bzoj 4540: [Hnoi2016]序列【单调栈+线段树】
强烈安利:http://blog.csdn.net/qq_34637390/article/details/51313126 这篇讲标记讲的非常好,这个标记非常神奇-- 首先last表示扫描到last ...
- 4540: [Hnoi2016]序列
4540: [Hnoi2016]序列 https://www.lydsy.com/JudgeOnline/problem.php?id=4540 分析: 莫队+RMQ+单调栈. 考虑加入一个点后,区间 ...
- [BZOJ4540][HNOI2016]序列 莫队
4540: [Hnoi2016]序列 Time Limit: 20 Sec Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n ...
- [Bzoj4540][Hnoi2016] 序列(莫队 + ST表 + 单调队列)
4540: [Hnoi2016]序列 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1567 Solved: 718[Submit][Status] ...
随机推荐
- 创建 ASP.NET Web API的Help Page
转:创建WEBAPI项目 转:添加测试API中的ASP.NET Web API帮助页面
- SQL存储过程编写,包含临时表
create proc R_ProductUse_M(@id1 int,@id2 int,@id3 int) as begin ---临时表1 select a.id1,b.id2,c.id3 int ...
- c# webbrowser在xp下自动闪退的一个坑
接前面的做了个扫码登录的,但是使用中发现在win7下没有题,但是在xp中使用时在加载那个二维码时会导致直接闪退,还无法捕捉到错误,折腾了一下午无果. 今天早上来看贴子有人说可能是webbrowser中 ...
- html5 表格标签 table tr td
最重要的三个 <table> 表格声明标签 属性: boarder 边框粗细 style 可配合css 使用 <tr> 行标签 table row ...
- 开启andriod手机的adbd,进行无线adb调试
注:如果没有 root 权限也是可以试试,一般情况下,都需要 root 权限,才能连接成功. 1.需要确保你的开发 PC 和 Android 手机都连上了 wifi 并处于同一网段下: 2.开启 ...
- jquery函数封装
<script type="text/javascript"> $(function () { $("#tabMenu a").on('click' ...
- RDLC报表的相关技巧三(数量/金额的逐页累加)
数量/金额的逐页累加,不是当页小计. 核心步骤: 1.在Group1大组中加入小组Group2,2.Group2的组尾加入一个计算框 : =RunningValue(Fields!BaseAmount ...
- bzoj1800飞行棋
题目链接 简单模拟 真的不敢相信ahoi09年的题竟然是这个难度 首先,一个必须要知道的定理是:圆上只有直径所对的圆周角是直角. 然后就很显然了, 只有两条不重合的直径上的四个点才能组成一个矩形, 所 ...
- centos6和ubuntu14搭建sftp
参考 http://blog.csdn.net/xinxin19881112/article/details/46831311 一. 在Centos 6.6环境使用系统自带的internal-sftp ...
- Ionic2 快速入门
本文原创版权归 博客园 yan_xiaodi 所有,转载请自觉于篇头位置显示标明原创作者及出处,这是您对作者劳动果实的自觉尊重!! 作者:yan_xiaodi 原文:http://www.cnblog ...