In this scenario you'll learn how to bootstrap a Kubernetes cluster using Kubeadm.

Kubeadm solves the problem of handling TLS encryption configuration, deploying the core Kubernetes components and ensuring that additional nodes can easily join the cluster. The resulting cluster is secured out of the box via mechanisms such as RBAC.

More details on Kubeadm can be found at https://github.com/kubernetes/kubeadm

Step 1 - Initialise Master

Kubeadm has been installed on the nodes. Packages are available for Ubuntu 16.04+, CentOS 7 or HypriotOS v1.0.1+.

The first stage of initialising the cluster is to launch the master node. The master is responsible for running the control plane components, etcd and the API server. Clients will communicate to the API to schedule workloads and manage the state of the cluster.

The command below will initialise the cluster with a known token to simplify the following steps.

kubeadm init --token=.1a7dd4cc8d1f4cc5 --kubernetes-version $(kubeadm version -o short)

In production, it's recommend to exclude the token causing kubeadm to generate one on your behalf.

To manage the Kubernetes cluster, the client configuration and certificates are required. This configuration is created when kubeadm initialises the cluster. The command copies the configuration to the users home directory and sets the environment variable for use with the CLI.

sudo cp /etc/kubernetes/admin.conf $HOME/
sudo chown $(id -u):$(id -g) $HOME/admin.conf
export KUBECONFIG=$HOME/admin.conf

Step 2 - Join Cluster

Once the Master has initialised, additional nodes can join the cluster as long as they have the correct token. The tokens can be managed via kubeadm token, for example kubeadm token list.

On the second node, run the command to join the cluster providing the IP address of the Master node.

kubeadm join --discovery-token-unsafe-skip-ca-verification --token=.1a7dd4cc8d1f4cc5 172.17.0.15:

This is the same command provided after the Master has been initialised.

The --discovery-token-unsafe-skip-ca-verification tag is used to bypass the Discovery Token verification. As this token is generated dynamically, we couldn't include it within the steps. When in production, use the token provided by kubeadm init.

Step 3 - View Nodes

The cluster has now been initialised. The Master node will manage the cluster, while our one worker node will run our container workloads.

The Kubernetes CLI, known as kubectl, can now use the configuration to access the cluster. For example, the command below will return the two nodes in our cluster.

kubectl get nodes

At this point, the Nodes will not be ready.

This is because the Container Network Interface has not been deployed. This will be fixed within the next step.

Step 4 - Deploy Container Networking Interface (CNI)

The Container Network Interface (CNI) defines how the different nodes and their workloads should communicate. There are multiple network providers available, some are listed here.

In this scenario we'll use WeaveWorks. The deployment definition can be viewed at

cat /opt/weave-kube

This can be deployed using kubectl apply.

kubectl apply -f /opt/weave-kube

Weave will now deploy as a series of Pods on the cluster. The status of this can be viewed using the command

kubectl get pod -n kube-system

When installing Weave on your cluster, visit https://www.weave.works/docs/net/latest/kube-addon/ for details.

Step 5 - Deploy Pod

The state of the two nodes in the cluster should now be Ready. This means that our deployments can be scheduled and launched.

Using Kubectl, it's possible to deploy pods. Commands are always issued for the Master with each node only responsible for executing the workloads.

The command below create a Pod based on the Docker Image katacoda/docker-http-server.

kubectl run http --image=katacoda/docker-http-server:latest --replicas=

The status of the Pod creation can be viewed using kubectl get pods

Once running, you can see the Docker Container running on the node.

docker ps | grep docker-http-server

Step 6 - Deploy Dashboard

Kubernetes has a web-based dashboard UI giving visibility into the Kubernetes cluster.

Deploy the dashboard yaml with the command

kubectl apply -f dashboard.yaml

The dashboard is deployed into the kube-system namespace. View the status of the deployment with

kubectl get pods -n kube-system

A ServiceAccount is required to login. A ClusterRoleBinding is used to assign the new ServiceAccount (admin-user) the role of cluster-admin on the cluster.

cat <<EOF | kubectl create -f -
apiVersion: v1
kind: ServiceAccount
metadata:
name: admin-user
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
name: admin-user
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- kind: ServiceAccount
name: admin-user
namespace: kube-system
EOF

This means they can control all aspects of Kubernetes. With ClusterRoleBinding and RBAC, different level of permissions can be defined based on security requirements. More information on creating a user for the Dashboard can be found in the Dashboard documentation.

Once the ServiceAccount has been created, the token to login can be found with:

kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep admin-user | awk '{print $1}')

When the dashboard was deployed, it used externalIPs to bind the service to port 8443. This makes the dashboard available to outside of the cluster and viewable at https://2886795304-8443-cykoria02.environments.katacoda.com/

Use the admin-user token to access the dashboard.

For production, instead of externalIPs, it's recommended to use kubectl proxyto access the dashboard. See more details at https://github.com/kubernetes/dashboard.

 

Kubernetes - Getting Started With Kubeadm的更多相关文章

  1. 使用kubernetes 官网工具kubeadm部署kubernetes(使用阿里云镜像)

    系列目录 kubernetes简介 Kubernetes节点架构图: kubernetes组件架构图: 准备基础环境 我们将使用kubeadm部署3个节点的 Kubernetes Cluster,整体 ...

  2. 从centos7镜像到搭建kubernetes集群(kubeadm方式安装)

    在网上看了不少关于Kubernetes的视频,虽然现在还未用上,但是也是时候总结记录一下,父亲常教我的一句话:学到手的东西总有一天会有用!我也相信在将来的某一天会用到现在所学的技术.废话不多扯了... ...

  3. kubernetes 1.17.2 kubeadm部署 证书修改为100年

    [root@hs-k8s-master01 ~]# cd /data/ [root@hs-k8s-master01 data]# ls docker [root@hs-k8s-master01 dat ...

  4. Kubernetes系列二: 使用kubeadm安装k8s环境

    环境 三台主机,一台master,两台node 作为master 作为node节点 作为node节点 每台主机Centos版本使用 CentOS Linux release 7.6.1810 (Cor ...

  5. 【Kubernetes学习笔记】-kubeadm 手动搭建kubernetes 集群

    目录 K8S 组件构成 环境准备 (以ubuntu系统为例) 1. kubernetes集群机器 2. 安装 docker. kubeadm.kubelet.kubectl 2.1 在每台机器上安装 ...

  6. 浅入kubernetes(5):尝试kubeadm

    本篇介绍利用 kubernetes 的命令行工具,快速创建集群实例,完成 hello world 实践. 上一篇试用 minikube 去搭建集群,这一篇将介绍通过 kubeadm 去操作. 命令行工 ...

  7. 【二】Kubernetes 集群部署-kubeadm方式(亲测)

    一.概述 本次部署 Kubernetes 集群是通过 kubeadm 工具来进行部署, kubeadm 是 Kubernetes 官⽅提供的⽤于快速部署 Kubernetes 集群的⼯具,利⽤其来部署 ...

  8. 企业运维实践-还不会部署高可用的kubernetes集群?使用kubeadm方式安装高可用k8s集群v1.23.7

    关注「WeiyiGeek」公众号 设为「特别关注」每天带你玩转网络安全运维.应用开发.物联网IOT学习! 希望各位看友[关注.点赞.评论.收藏.投币],助力每一个梦想. 文章目录: 0x00 前言简述 ...

  9. kubernetes教程第一章-kubeadm高可用安装k8s集群

    目录 Kubeadm高可用安装k8s集群 kubeadm高可用安装1.18基本说明 k8s高可用架构解析 kubeadm基本环境配置 kubeadm基本组件安装 kubeadm集群初始化 高可用Mas ...

随机推荐

  1. Ubuntu—截屏与截取选定区域

    截屏:PrScrn(打印键) 截取选定区域:shift + PrScrn(打印键) # 截取选定区域时,先按下组合键后,鼠标的形状就会变成十字架形状,这时候再截取想要截取的区域就可以了-

  2. jQuery File Upload文件上传插件简单使用

    前言 开发过程中有时候需要用户在前段上传图片信息,我们通常可以使用form标签设置enctype=”multipart/form-data” 属性上传图片,当我们点击submit按钮的时候,图片信息就 ...

  3. 直接管理内存——new和delete

    一.运算符new 1. 使用new动态分配对象 在自由空间分配的内存是无名的,故new无法为其分配的对象命名,而是返回一个指向该对象的指针 int *pi = new int; //pi指向一个动态分 ...

  4. C语言--链表基础模板

    1.建立结构体 struct ST { int num;///学号 int score;///成绩 struct ST*next; };///结构体 2.空链表的创建 struct ST creatN ...

  5. Notes of the scrum meeting before publishing(12.17)

    meeting time:18:30~20:30p.m.,December 17th,2013 meeting place:3号公寓一层 attendees: 顾育豪                  ...

  6. NIO 服务端TCP连接管理的方案

    最近做的一个项目需要在服务端对连接端进行管理,故将方案记录于此. 方案实现的结果与背景 因为服务端与客户端实现的是长连接,所以需要对客户端的连接情况进行监控,防止无效连接占用资源. 完成类似于心跳的接 ...

  7. 显示系统中所有的socket信息

    netstat -aon /proc/net/tcp /proc/net/udp /proc/net/unix 相关的代码是:tcp4_seq_show(struct seq_file *file, ...

  8. TCP标志位简析

    TCP标志位简析   TCP标志位  URG:此标志表示TCP包的紧急指针域(后面马上就要说到)有效,用来保证TCP连接不被中断,并且督促中间层设备要尽快处理这些数据: ACK:此标志表示应答域有效, ...

  9. JDK各个版本比较 JDK5~JDK9

    JDK5 自动装箱与拆箱: 枚举 静态导入,如:import staticjava.lang.System.out 可变参数(Varargs) 内省(Introspector),主要用于操作JavaB ...

  10. WPF DataGrid的使用

    构造数据: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Sy ...