【题目大意】

给出n位十进制a和b,求a*b。

【思路】

FFT。感觉弄起来比较麻烦,不如直接背板子。

注意一下MAXN的取值,我一开始非常随意地就写了60000*2+50,其实n是要扩展到最接近的2的次幂的,所以要取到2^17

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<complex>
#include<cmath>
#define pi acos(-1)
using namespace std;
const int MAXN=131072+5;
typedef complex<double> com;
int n,m,L;
com a[MAXN],b[MAXN];
int c[MAXN],Rev[MAXN]; void get_bit(){for (n=,L=;n<m;n<<=) L++;}
void get_Rtable(){for (int i=;i<n;i++) Rev[i]=(Rev[i>>]>>)|((i&)<<(L-));}
void multi(com* a,com* b){for (int i=;i<n;i++) a[i]*=b[i];} void FFT(com* a,int flag)
{
for (int i=;i<n;i++)if(i<Rev[i])swap(a[i],a[Rev[i]]); //利用逆序表,快速求逆序
for (int i=;i<n;i<<=)
{
com wn(cos(*pi/(i*)),flag*sin(*pi/(i*)));
for (int j=;j<n;j+=(i<<))
{
com w(,);
for (int k=;k<i;k++,w*=wn)
{
com x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y;
a[j+k+i]=x-y;
}
}
}
if (flag==-) for (int i=;i<n;i++) a[i]/=n;
} void init()
{
char str[MAXN];
scanf("%d",&n);
scanf("%s",str);
for (int i=;i<n;i++) a[i]=str[n--i]-'';
scanf("%s",str);
for (int i=;i<n;i++) b[i]=str[n--i]-'';
} void solve()
{
m=n<<;//相乘后的位数是原来的2倍
get_bit();
get_Rtable();//求逆序表:末位为0,直接为其前一半逆序表的值右移一位,末位为1,在最高位添加1
FFT(a,),FFT(b,);//分别将a与b的系数表达式转为点值表达式
multi(a,b);//点值表达式相乘
FFT(a,-);//将相乘后的点值表达式转为系数表达式 } void print()
{
for(int i=;i<m;i++) c[i]=(int)(a[i].real()+0.5);
for (;c[m-]==;m--); //把前置的0清空
for (int i=;i<m;i++)
{
if (c[i]>=)
{
c[i+]+=c[i]/;
c[i]%=;
if (i==m-) m++;
}
}
for (int i=m-;i>=;i--) printf("%d",c[i]);
} int main()
{
init();
solve();
print();
return ;
}

【FFT】BZOJ2179- FFT快速傅立叶的更多相关文章

  1. 【BZOJ2179】FFT快速傅立叶

    [BZOJ2179]FFT快速傅立叶 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位 ...

  2. [bzoj2179]FFT快速傅立叶_FFT

    FFT快速傅立叶 bzoj-2179 题目大意:给出两个n位10进制整数x和y,你需要计算x*y. 注释:$1\le n\le 6\times 10^4$. 想法: $FFT$入门题. $FFT$实现 ...

  3. 【bzoj2179】FFT快速傅立叶 FFT模板

    2016-06-01  09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...

  4. bzoj2179: FFT快速傅立叶

    #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> ...

  5. BZOJ 2179: FFT快速傅立叶

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2923  Solved: 1498[Submit][Status][Di ...

  6. 【CodeVS 3123】高精度练习之超大整数乘法 &【BZOJ 2197】FFT快速傅立叶

    第一次写法法塔,,,感到威力无穷啊 看了一上午算导就当我看懂了?PS:要是机房里能有个清净的看书环境就好了 FFT主要是用了巧妙的复数单位根,复数单位根在复平面上的对称性使得快速傅立叶变换的时间复杂度 ...

  7. BZOJ_2179_FFT快速傅立叶_(FFT)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=2179 超大整数乘法 分析 FFT模板题. 把数字看成是多项式,x是10.然后用FFT做多项式乘 ...

  8. 离散傅立叶变换与快速傅立叶变换(DFT与FFT)

    自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...

  9. 快速傅立叶变换(FFT)算法

    已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...

随机推荐

  1. this可以通过call改变的测试

  2. Tornado 安装及简单程序示例

    1.安装步骤:tar xvzf tornado-3.2.tar.gz cd tornado-3.2 python setup.py build sudo python setup.py install ...

  3. perl 复制exe文件的简单方法

    use warnings; use strict; open EXE, "cmd.exe" or die "Can not open cmd.exe:$!\n" ...

  4. python基础===open()文件处理使用介绍

    本文转自:Python open()文件处理使用介绍 1. open()语法open(file[, mode[, buffering[, encoding[, errors[, newline[, c ...

  5. 64_a2

    arquillian-core-parent-1.1.11-6.fc26.noarch.rpm 10-Feb-2017 13:22 12918 arquillian-core-spi-1.1.11-6 ...

  6. bzoj 1179 Atm

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1179 题解: 一道比较综合的图论题 直接讲正解: 如果这个图G中存在某个强连通分量,那么这 ...

  7. [ python ] hasattr()、getattr()、setattr() 三者关系及运用

    hasattr(object, name) 判断一个对象(object)是否存在name属性或方法,返回boolean值,有name属性返回True, 否则返回False In [1]: class ...

  8. python中烦人的锟斤拷(\xef\xbf\xbd)

    首先要知道\xef\xbf\xbd是啥东西 >>> u'\uFFFD'.encode('utf-8') '\xef\xbf\xbd' 由此我们可以知道\xef\xbf\xbd是utf ...

  9. linux命令(49):wget命令

    Linux wget是一个下载文件的工具,它用在命令行下.对于Linux用户是必不可少的工具,尤其对于网络管理员,经常要下载一些软件或从远程服务器恢复备份到本地服务器.如果我们使用虚拟主机,处理这样的 ...

  10. CocoaPods第三方类库依赖管理

    安装cocoapods   1.移除ruby的源地址 gem sources --remove https://rubygems.org/   2.添加ruby的源地址 gem sources -a ...