4195: [Noi2015]程序自动分析

Description

在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。

考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x1≠x4,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。
现在给出一些约束满足问题,请分别对它们进行判定。

Input

输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。

对于每个问题,包含若干行:
第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。
接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若e=0,则该约束条件为xi≠xj。

Output

输出文件包括t行。

输出文件的第k行输出一个字符串“YES”或者“NO”(不包含引号,字母全部大写),“YES”表示输入中的第k个问题判定为可以被满足,“NO”表示不可被满足。

Sample Input

2
2
1 2 1
1 2 0
2
1 2 1
2 1 1

Sample Output

NO
YES

HINT

在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。

在第二个问题中,约束条件为:x1=x2,x2=x1。这两个约束条件是等价的,可以被同时满足。
1≤n≤1000000
1≤i,j≤1000000000
 
题解:
 
是并查集无疑。。
P.S.一开始考虑错了,往经典的朋友和敌人方面上想了,但是被这个不等于搞的乱七八糟。。。。
其实只要先维护等于的关系就好了。。。。
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1000005;
struct node
{
int a,id;
}p[N<<1];
int T,n,i,P,k,a[N],h[N<<1],f[N<<1];
inline void read(int &v){
char ch,fu=0;
for(ch='*'; (ch<'0'||ch>'9')&&ch!='-'; ch=getchar());
if(ch=='-') fu=1, ch=getchar();
for(v=0; ch>='0'&&ch<='9'; ch=getchar()) v=v*10+ch-'0';
if(fu) v=-v;
}
bool cmp(const node&x,const node&y)
{
return x.a<y.a;
}
int get(int x)
{
if(f[x]==x) return x;else return f[x]=get(f[x]);
}
int main()
{
read(T);
while(T--)
{
read(n);
for(i=1;i<=n;i++)
{
read(p[i*2-1].a),read(p[i*2].a),read(a[i]);
p[i*2-1].id=i*2-1,p[i*2].id=i*2;
}
sort(p+1,p+n*2+1,cmp);
k=0;
for(i=1;i<=n*2;i++)
{
if(p[i].a!=p[i-1].a) k++;
h[p[i].id]=k;
f[i]=i;
}
for(i=1;i<=n;i++)
if(a[i]==1)
{
int fx=get(h[i*2-1]),fy=get(h[i*2]);
if(fx!=fy) f[fx]=fy;
}
P=0;
for(i=1;i<=n;i++)
if(a[i]==0)
{
int fx=get(h[i*2-1]),fy=get(h[i*2]);
if(fx==fy) {P=1;break;}
}
if(P==1) printf("NO\n");else printf("YES\n");
}
return 0;
}
 

bzoj 4195: [Noi2015]程序自动分析的更多相关文章

  1. BZOJ 4195: [Noi2015]程序自动分析 并查集+离散化

    LUOGU 1955BZOJ 4195 题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量 ...

  2. BZOJ——4195: [Noi2015]程序自动分析

    http://www.lydsy.com/JudgeOnline/problem.php?id=4195 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: ...

  3. 【刷题】BZOJ 4195 [Noi2015]程序自动分析

    Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,-代表程序中出现的变量,给定n个形如xi=xj或x ...

  4. BZOJ 4195: [Noi2015]程序自动分析 并查集 + 离散化 + 水题

    TM 读错题了...... 我还以为是要动态询问呢,结果是统一处理完了再询问...... 幼儿园题,不解释. Code: #include<bits/stdc++.h> #define m ...

  5. BZOJ 4195: [Noi2015]程序自动分析 [并查集 离散化 | 种类并查集WA]

    题意: 给出若干相等和不等关系,判断是否可行 woc NOI考这么傻逼的题飞快打了一个种类并查集交上了然后爆零... 发现相等和不等看错了异或一下再叫woc90分 然后发现md$a \neq b, a ...

  6. bzoj 4195: [Noi2015]程序自动分析【并查集】

    等于有传递性,所以hash一下把等于用并查集连起来,然后再判断不等于是否合法即可 #include<iostream> #include<cstdio> #include< ...

  7. BZOJ4195 [Noi2015]程序自动分析(离散化+并查集)

    4195: [Noi2015]程序自动分析 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 689  Solved: 296 [Submit][Sta ...

  8. BZOJ4195 NOI2015 程序自动分析

    4195: [Noi2015]程序自动分析 Time Limit: 10 Sec Memory Limit: 512 MB Description 在实现程序自动分析的过程中,常常需要判定一些约束条件 ...

  9. codevs4600 [NOI2015]程序自动分析==洛谷P1955 程序自动分析

    4600 [NOI2015]程序自动分析  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 在实现 ...

随机推荐

  1. HTML跳转新窗口的方法

    笔试遇到这样的一个问题,特意整理一下. 方法一 纯HTML <a href="http://www.cnblogs.com" target="_blank" ...

  2. Part2-HttpClient官方教程-Chapter3-HTTP状态管理

    ps:近日忙于课设与一个赛事的准备....时间真紧啊~~ 最初,HTTP被设计为一种无状态的,面向请求/响应的协议,它并没有为跨越多个逻辑相关的请求/响应交换的有状态会话做出特殊规定.随着HTTP协议 ...

  3. handle_level_irq 与handle_edge_irq 的区别【转】

    转自:http://blog.csdn.net/xavierxiao/article/details/6087277 版权声明:本文为博主原创文章,未经博主允许不得转载. Linux 里, handl ...

  4. ThinkPHP5 正则验证中有“|”时提示“规则错误”的解决方案

    正则规则中有“|”时,会引起解析错误: 'regex:\d{3,4}[\s,-]?\d{7,8}|1[3,4,5,8]\d[\s,-]?\d{4}[\s,-]?\d{4}' 使用数组语法可以解决: [ ...

  5. jQuery Validate插件 验证实例

    官网地址:http://bassistance.de/jquery-plugins/jquery-plugin-validation Validate手册: http://www.cnblogs.co ...

  6. JAVA 线程状态及转化

    线程状态图 说明:线程共包括以下5种状态.1. 新建状态(New)         : 线程对象被创建后,就进入了新建状态.例如,Thread thread = new Thread().2. 就绪状 ...

  7. Deep Learning基础--CNN的反向求导及练习

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  8. 微信支付之SHA256签名失败

    在接微信支付的时候,或多或少会遇到签名失败,本人接入的时候也遇了不少次: 总结如下: 1.参数没有经过ASCII排序 2.参数包含中文未经过UTF-8标准转化加密后的签名不对应(经本人测验:加密算法要 ...

  9. C#调用Excel报 error CS1969: 找不到编译动态表达式所需的一个或多个类型。是否缺少引用?

    转自[http://blog.csdn.net/bodybo/article/details/43191319] 程序需要读取Exel文件,有如下代码段 object oMissing = Syste ...

  10. 6:django 通用视图

    上一节我们介绍了django视图函数里面几个常用的函数,这节我们来看一下django为我们提供的一些通用视图吧 在最后面有我自己的示例代码,html部分太多了就不贴了 “简单”视图函数 正如名字所言, ...