17082 两个有序数序列中找第k小
17082 两个有序数序列中找第k小
时间限制:1000MS 内存限制:65535K
提交次数:0 通过次数:0
题型: 编程题 语言: 无限制
Description
已知两个已经排好序(非减序)的序列X和Y,其中X的长度为m,Y长度为n,
现在请你用分治算法,找出X和Y的第k小的数,算法时间复杂度为O(max{logm, logn})。 此题请勿采用将序列X和Y合并找第k小的O(m+n)的一般方法,要充分利用X和Y已经排好序的这一特性。
输入格式
第一行有三个数,分别是长度m、长度n和k,中间空格相连(1<=m,n<=100000; 1<=k<=m+n)。
第二行m个数分别是非减序的序列X。第三行n个数分别是非减序的序列Y。
输出格式
序列X和Y的第k小的数。
输入样例
5 6 7
1 8 12 12 21
4 12 20 22 26 31
输出样例
20
提示
假设:X序列为X[xBeg...xEnd],而Y序列为Y[yBeg...yEnd]。 将序列X和Y都均分2段,即取X序列中间位置为xMid (xMid = xBeg+(xEnd-xBeg)/2),也同理取序列Y中间位置为yMid。
比较X[xMid]和Y[yMid]的大小,此时记录X左段和Y左段元素个数合计为halfLen,即halfLen = xMid-xBeg+yMid-yBeg+2。 1. 当X[xMid] < Y[yMid]时,在合并的数组中,原X[xBeg...xMid]所有元素一定在Y[yMid]的左侧,
(1) 若k < halfLen,则此时第k大的元素一定不会大于Y[yMid]这个元素,故以后没有必要搜索 Y[yMid...yEnd]这些元素,可弃Y后半段数据。
此时只需递归的对X序列+Y序列的前半段,去搜索第k小的数。 (2) 若k >= halfLen,则此时第k大的元素一定不会小于X[xMid]这个元素,故以后没有必要搜索 X[xBeg...xMid]这些元素,可弃X前半段数据。
此时只需递归的对X序列的后半段+Y序列,去搜索第 k-(xMid-xBeg+1)小的数。 2. 当X[xMid] >= Y[yMid]时,在合并的数组中,原Y[yBeg...yMid]的所有元素一定在X[xMid]的左侧,
(1) 若k < halfLen,则此时第k大的元素一定不会大于X[xMid]这个元素,故以后没有必要搜索 X[xMid...xEnd]这些元素,可弃X后半段数据。
此时只需递归的对X序列的前半段+Y序列,去搜索第k小的数。 (2) 若k >= halfLen,则此时第k大的元素一定不会小于Y[yMid]这个元素,故以后没有必要搜索 Y[yBeg...yMid]这些元素,可弃Y前半段数据。
此时只需递归的对X序列+Y序列的后半段,去搜索第 k-(yMid-yBeg+1)小的数。
代码实现
#include <stdio.h>
#include <stdlib.h>
#define maxn 100010
int a[maxn], b[maxn], k; int f(int la,int ra,int lb,int rb)
{
int halflen, ma, mb;
if(lb > rb) return a[la+k-1];//递归边界
if(la > ra) return b[lb+k-1];//递归边界
ma = (ra + la) / 2;
mb = (rb + lb) / 2;
halflen = ma - la + mb - lb + 2;
if(a[ma] < b[mb])
{
if(k < halflen) return f(la, ra, lb, mb-1);
k -= (ma - la + 1);
return f(ma + 1, ra, lb, rb);
}
else
{
if(k < halflen) return f(la, ma-1, lb, rb);
k -= (mb - lb + 1);
return f(la, ra, mb + 1, rb);
}
} int main()
{
int m,n,i; scanf("%d%d%d",&m,&n,&k);
for(i = 0; i < m; i++)
scanf("%d", &a[i]);
for(i = 0; i < n; i++)
scanf("%d", &b[i]);
printf("%d\n",f(0, m-1, 0, n-1));
return 0;
}
17082 两个有序数序列中找第k小的更多相关文章
- 17082 两个有序数序列中找第k小(优先做)
17082 两个有序数序列中找第k小(优先做) 时间限制:1000MS 内存限制:65535K提交次数:0 通过次数:0 题型: 编程题 语言: G++;GCC;VC Description 已 ...
- 17082 两个有序数序列中找第k小(优先做) O(logn)
17082 两个有序数序列中找第k小(优先做) 时间限制:1000MS 内存限制:65535K提交次数:0 通过次数:0 题型: 编程题 语言: G++;GCC;VC Description 已 ...
- 寻找两个已序数组中的第k大元素
寻找两个已序数组中的第k大元素 1.问题描述 给定两个数组与,其大小分别为.,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第大的元素,其中,.例如,对于数组,.我们记第大的 ...
- 【算法剖析】寻找两个已序数组中的第k大元素
1.问题描述 给定两个数组A与B,其大小分别为m.n,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第k大的元素,其中,1\le k\le(m+n).例如,对于数组A=[1, ...
- 在线性级别时间内找出无序序列中的第k个元素
在一个无序序列中找出第k个元素,对于k很小或者很大时可以采取特殊的方法,比如用堆排序来实现 .但是对于与序列长度N成正比的k来说,就不是一件容易的事了,可能最容易想到的就是先将无序序列排序再遍历即可找 ...
- 两个有序数列找第k小
给定一个数组,数组中的数据无序,在一个数组中找出其第k个最小的数,例如对于数组x,x = {3,2,1,4,5,6},则其第2个最小的数为2 两个有序数组 找第k小 * 方案一 合并遍历 * 二:游 ...
- [LeetCode] Find K-th Smallest Pair Distance 找第K小的数对儿距离
Given an integer array, return the k-th smallest distance among all the pairs. The distance of a pai ...
- 快速排序算法的实现 && 随机生成区间里的数 && O(n)找第k小 && O(nlogk)找前k大
思路:固定一个数,把这个数放到合法的位置,然后左边的数都是比它小,右边的数都是比它大 固定权值选的是第一个数,或者一个随机数 因为固定的是左端点,所以一开始需要在右端点开始,找一个小于权值的数,从左端 ...
- [LeetCode] 719. Find K-th Smallest Pair Distance 找第K小的数对儿距离
Given an integer array, return the k-th smallest distance among all the pairs. The distance of a pai ...
随机推荐
- Import 元素 (MSBuild)
Import 元素 (MSBuild) Visual Studio 2013 .NET Framework 4 .NET Framework 3 ...
- 【Bootstrap基础学习】02 Bootstrap的布局组件应用示例
字体图标的应用示例 <button type="button" class="btn btn-default"> <span class=&q ...
- 泛函编程(8)-数据结构-Tree
上节介绍了泛函数据结构List及相关的泛函编程函数设计使用,还附带了少许多态类型(Polymorphic Type)及变形(Type Variance)的介绍.有关Polymorphism的详细介绍会 ...
- 设计模式总结篇系列:观察者模式(Observer)
观察者模式中通常有两个基本的概念主题:观察者和被观察者.当被观察者状态发生改变时,需要通知相应的观察者,当然,每个被观察者所对应的观察者可能不知一个,他们之间是1:n的关系.用专业一点的术语对观察者模 ...
- Android图像处理之Bitmap类
Bitmap是Android系统中的图像处理的最重要类之一.用它可以获取图像文件信息,进行图像剪切.旋转.缩放等操作,并可以指定格式保存图像文件.本文从应用的角度,着重介绍怎么用Bitmap来实现 ...
- Play Framework介绍:控制器层
业务逻辑代码通常位于模型(model)层.客户端(比如浏览器)无法直接调用其中的代码,所以模型对象提供的功能,必须作为资源以URI方式暴露给外部. 客户端使用HTTP协议来操作这些资源,从而调用了内部 ...
- 操作iframe
iframe是在页面中嵌套的子页,当前页面(这里称为父页)和嵌套页面(这里称为子页)可以相互控制: 当父页控制子页用contentWindow,用法为 对象.contentWindow.documen ...
- 当Thread.Sleep的暂停时间参数设置过小时,精度很差的解决方法
一.问题产生 在C#和C++中有这样一个函数:void Sleep(int Timeout),可以让线程暂停指定的毫秒数. 但是我在win8下调用这个函数实现按照固定频率发送udp数据包时,会有一个问 ...
- JavaScript强化教程——Cocos2d-JS中JavaScript继承
javaScript语言本身没有提供类,没有其它语言的类继承机制,它的继承是通过对象的原型实现的,但这不能满足Cocos2d-JS引擎的要求.由于Cocos2d-JS引擎是从Cocos2d-x演变而来 ...
- AngularJS(一)
<!doctype html> <html ng-app=""> <!-- ng-app指令标记了AngularJS脚本的作用域 --> & ...