matlab 图像分割算法源码

1.图像反转

MATLAB程序实现如下:
I=imread('xian.bmp');
J=double(I);
J=-J+(256-1); %图像反转线性变换
H=uint8(J);
subplot(1,2,1),imshow(I);
subplot(1,2,2),imshow(H);

2.灰度线性变换

MATLAB程序实现如下:
I=imread('xian.bmp');
subplot(2,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
axis on; %显示坐标系
I1=rgb2gray(I);
subplot(2,2,2),imshow(I1);
title('灰度图像');
axis([50,250,50,200]);
axis on; %显示坐标系
J=imadjust(I1,[0.1 0.5],[]); %局部拉伸,把[0.1 0.5]内的灰度拉伸为[0 1]
subplot(2,2,3),imshow(J);
title('线性变换图像[0.1 0.5]');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
K=imadjust(I1,[0.3 0.7],[]); %局部拉伸,把[0.3 0.7]内的灰度拉伸为[0 1]
subplot(2,2,4),imshow(K);
title('线性变换图像[0.3 0.7]');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系

3.非线性变换

MATLAB程序实现如下:
I=imread('xian.bmp');
I1=rgb2gray(I);
subplot(1,2,1),imshow(I1);
title('灰度图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
J=double(I1);
J=40*(log(J+1));
H=uint8(J);
subplot(1,2,2),imshow(H);
title('对数变换图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系

4.直方图均衡化

MATLAB程序实现如下:
I=imread('xian.bmp');
I=rgb2gray(I);
figure;
subplot(2,2,1);
imshow(I);
subplot(2,2,2);
imhist(I);
I1=histeq(I);
figure;
subplot(2,2,1);
imshow(I1);
subplot(2,2,2);
imhist(I1);

5.线性平滑滤波器

用MATLAB实现领域平均法抑制噪声程序:
I=imread('xian.bmp');
subplot(231)
imshow(I)
title('原始图像')
I=rgb2gray(I);
I1=imnoise(I,'salt & pepper',0.02);
subplot(232)
imshow(I1)
title('添加椒盐噪声的图像')
k1=filter2(fspecial('average',3),I1)/255; %进行3*3模板平滑滤波
k2=filter2(fspecial('average',5),I1)/255; %进行5*5模板平滑滤波k3=filter2(fspecial('average',7),I1)/255; %进行7*7模板平滑滤波
k4=filter2(fspecial('average',9),I1)/255; %进行9*9模板平滑滤波
subplot(233),imshow(k1);title('3*3模板平滑滤波');
subplot(234),imshow(k2);title('5*5模板平滑滤波');
subplot(235),imshow(k3);title('7*7模板平滑滤波');
subplot(236),imshow(k4);title('9*9模板平滑滤波');

6.中值滤波器

用MATLAB实现中值滤波程序如下:
I=imread('xian.bmp');
I=rgb2gray(I);
J=imnoise(I,'salt&pepper',0.02);
subplot(231),imshow(I);title('原图像');
subplot(232),imshow(J);title('添加椒盐噪声图像');
k1=medfilt2(J); %进行3*3模板中值滤波
k2=medfilt2(J,[5,5]); %进行5*5模板中值滤波
k3=medfilt2(J,[7,7]); %进行7*7模板中值滤波
k4=medfilt2(J,[9,9]); %进行9*9模板中值滤波
subplot(233),imshow(k1);title('3*3模板中值滤波');
subplot(234),imshow(k2);title('5*5模板中值滤波');
subplot(235),imshow(k3);title('7*7模板中值滤波');
subplot(236),imshow(k4);title('9*9模板中值滤波');

7.用Sobel算子和拉普拉斯对图像锐化:

I=imread('xian.bmp');
subplot(2,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I1=im2bw(I);
subplot(2,2,2),imshow(I1);
title('二值图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
H=fspecial('sobel'); %选择sobel算子
J=filter2(H,I1); %卷积运算
subplot(2,2,3),imshow(J);
title('sobel算子锐化图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
h=[0 1 0,1 -4 1,0 1 0]; %拉普拉斯算子
J1=conv2(I1,h,'same'); %卷积运算
subplot(2,2,4),imshow(J1);
title('拉普拉斯算子锐化图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系

8.梯度算子检测边缘

用MATLAB实现如下:
I=imread('xian.bmp');
subplot(2,3,1);
imshow(I);
title('原始图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I1=im2bw(I);
subplot(2,3,2);
imshow(I1);
title('二值图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I2=edge(I1,'roberts');
figure;
subplot(2,3,3);
imshow(I2);
title('roberts算子分割结果');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I3=edge(I1,'sobel');
subplot(2,3,4);
imshow(I3);
title('sobel算子分割结果');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I4=edge(I1,'Prewitt');
subplot(2,3,5);
imshow(I4);
title('Prewitt算子分割结果');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系

9.LOG算子检测边缘

用MATLAB程序实现如下:
I=imread('xian.bmp');
subplot(2,2,1);
imshow(I);
title('原始图像');
I1=rgb2gray(I);
subplot(2,2,2);
imshow(I1);
title('灰度图像');
I2=edge(I1,'log');
subplot(2,2,3);
imshow(I2);
title('log算子分割结果');

10.Canny算子检测边缘

用MATLAB程序实现如下:
I=imread('xian.bmp');
subplot(2,2,1);
imshow(I);
title('原始图像')
I1=rgb2gray(I);
subplot(2,2,2);
imshow(I1);
title('灰度图像');
I2=edge(I1,'canny');
subplot(2,2,3);
imshow(I2);
title('canny算子分割结果');

11.边界跟踪(bwtraceboundary函数)

clc
clear all
I=imread('xian.bmp');
figure
imshow(I);
title('原始图像');
I1=rgb2gray(I); %将彩色图像转化灰度图像
threshold=graythresh(I1); %计算将灰度图像转化为二值图像所需的门限
BW=im2bw(I1, threshold); %将灰度图像转化为二值图像
figure
imshow(BW);
title('二值图像');
dim=size(BW);
col=round(dim(2)/2)-90; %计算起始点列坐标
row=find(BW(:,col),1); %计算起始点行坐标
connectivity=8;
num_points=180;
contour=bwtraceboundary(BW,[row,col],'N',connectivity,num_points);
%提取边界
figure
imshow(I1);
hold on;
plot(contour(:,2),contour(:,1), 'g','LineWidth' ,2);
title('边界跟踪图像');

12.Hough变换

I= imread('xian.bmp');
rotI=rgb2gray(I);
subplot(2,2,1);
imshow(rotI);
title('灰度图像');
axis([50,250,50,200]);
grid on;
axis on;
BW=edge(rotI,'prewitt');
subplot(2,2,2);
imshow(BW);
title('prewitt算子边缘检测后图像');
axis([50,250,50,200]);
grid on;
axis on;
[H,T,R]=hough(BW);
subplot(2,2,3);
imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
title('霍夫变换图');
xlabel('\theta'),ylabel('\rho');
axis on , axis normal, hold on;
P=houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));
x=T(P(:,2));y=R(P(:,1));
plot(x,y,'s','color','white');
lines=houghlines(BW,T,R,P,'FillGap',5,'MinLength',7);
subplot(2,2,4);,imshow(rotI);
title('霍夫变换图像检测');
axis([50,250,50,200]);
grid on;
axis on;
hold on;
max_len=0;
for k=1:length(lines)
xy=[lines(k).point1;lines(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');
plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');
len=norm(lines(k).point1-lines(k).point2);
if(len>max_len)
max_len=len;
xy_long=xy;
end
end
plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan');

13.直方图阈值法

用MATLAB实现直方图阈值法:
I=imread('xian.bmp');
I1=rgb2gray(I);
figure;
subplot(2,2,1);
imshow(I1);
title('灰度图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
[m,n]=size(I1); %测量图像尺寸参数
GP=zeros(1,256); %预创建存放灰度出现概率的向量
for k=0:255
GP(k+1)=length(find(I1==k))/(m*n); %计算每级灰度出现的概率,将其存入GP中相应位置
end
subplot(2,2,2),bar(0:255,GP,'g') %绘制直方图
title('灰度直方图')
xlabel('灰度值')
ylabel('出现概率')
I2=im2bw(I,150/255);
subplot(2,2,3),imshow(I2);
title('阈值150的分割图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I3=im2bw(I,200/255); %
subplot(2,2,4),imshow(I3);
title('阈值200的分割图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系

14. 自动阈值法:Otsu法

用MATLAB实现Otsu算法:
clc
clear all
I=imread('xian.bmp');
subplot(1,2,1),imshow(I);
title('原始图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
level=graythresh(I); %确定灰度阈值
BW=im2bw(I,level);
subplot(1,2,2),imshow(BW);
title('Otsu法阈值分割图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系

15.膨胀操作

I=imread('xian.bmp'); %载入图像
I1=rgb2gray(I);
subplot(1,2,1);
imshow(I1);
title('灰度图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
se=strel('disk',1); %生成圆形结构元素
I2=imdilate(I1,se); %用生成的结构元素对图像进行膨胀
subplot(1,2,2);
imshow(I2);
title('膨胀后图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
16.腐蚀操作
MATLAB实现腐蚀操作
I=imread('xian.bmp'); %载入图像
I1=rgb2gray(I);
subplot(1,2,1);
imshow(I1);
title('灰度图像')
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
se=strel('disk',1); %生成圆形结构元素
I2=imerode(I1,se); %用生成的结构元素对图像进行腐蚀
subplot(1,2,2);
imshow(I2);
title('腐蚀后图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系

17.开启和闭合操作

用MATLAB实现开启和闭合操作
I=imread('xian.bmp'); %载入图像
subplot(2,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
axis on; %显示坐标系
I1=rgb2gray(I);
subplot(2,2,2),imshow(I1);
title('灰度图像');
axis([50,250,50,200]);
axis on; %显示坐标系
se=strel('disk',1); %采用半径为1的圆作为结构元素
I2=imopen(I1,se); %开启操作
I3=imclose(I1,se); %闭合操作
subplot(2,2,3),imshow(I2);
title('开启运算后图像');
axis([50,250,50,200]);
axis on; %显示坐标系
subplot(2,2,4),imshow(I3);
title('闭合运算后图像');
axis([50,250,50,200]);
axis on; %显示坐标系

18.开启和闭合组合操作

I=imread('xian.bmp'); %载入图像
subplot(3,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
axis on; %显示坐标系
I1=rgb2gray(I);
subplot(3,2,2),imshow(I1);
title('灰度图像');
axis([50,250,50,200]);
axis on; %显示坐标系
se=strel('disk',1);
I2=imopen(I1,se); %开启操作
I3=imclose(I1,se); %闭合操作
subplot(3,2,3),imshow(I2);
title('开启运算后图像');
axis([50,250,50,200]);
axis on; %显示坐标系
subplot(3,2,4),imshow(I3);
title('闭合运算后图像');
axis([50,250,50,200]);
axis on; %显示坐标系
se=strel('disk',1);
I4=imopen(I1,se);
I5=imclose(I4,se);
subplot(3,2,5),imshow(I5); %开—闭运算图像
title('开—闭运算图像');
axis([50,250,50,200]);
axis on; %显示坐标系
I6=imclose(I1,se);
I7=imopen(I6,se);
subplot(3,2,6),imshow(I7); %闭—开运算图像
title('闭—开运算图像');
axis([50,250,50,200]);
axis on; %显示坐标系

19.形态学边界提取

利用MATLAB实现如下:
I=imread('xian.bmp'); %载入图像
subplot(1,3,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I1=im2bw(I);
subplot(1,3,2),imshow(I1);
title('二值化图像');
axis([50,250,50,200]);
grid on; %显示网格线
axis on; %显示坐标系
I2=bwperim(I1); %获取区域的周长
subplot(1,3,3),imshow(I2);
title('边界周长的二值图像');
axis([50,250,50,200]);
grid on;
axis on;

20.形态学骨架提取

利用MATLAB实现如下:
I=imread('xian.bmp');
subplot(2,2,1),imshow(I);
title('原始图像');
axis([50,250,50,200]);
axis on;
I1=im2bw(I);
subplot(2,2,2),imshow(I1);
title('二值图像');
axis([50,250,50,200]);
axis on;
I2=bwmorph(I1,'skel',1);
subplot(2,2,3),imshow(I2);
title('1次骨架提取');
axis([50,250,50,200]);
axis on;
I3=bwmorph(I1,'skel',2);
subplot(2,2,4),imshow(I3);
title('2次骨架提取');
axis([50,250,50,200]);
axis on;

21.直接提取四个顶点坐标

I = imread('xian.bmp');
I = I(:,:,1);
BW=im2bw(I);
figure
imshow(~BW)
[x,y]=getpts

paper 55:图像分割代码汇总的更多相关文章

  1. 矩阵分解(rank decomposition)文章代码汇总

    矩阵分解(rank decomposition)文章代码汇总 矩阵分解(rank decomposition) 本文收集了现有矩阵分解的几乎所有算法和应用,原文链接:https://sites.goo ...

  2. 常见.NET功能代码汇总 (2)

    常见.NET功能代码汇总 23,获取和设置分级缓存 获取缓存:首先从本地缓存获取,如果没有,再去读取分布式缓存写缓存:同时写本地缓存和分布式缓存 private static T GetGradeCa ...

  3. Magento Table Rate运费国家代码汇总

    Magento Table Rate是三种内置未调用第三方API运费方式中最强大的一个.通过设置国家,区域,邮编,价格来划分不同的运费等级.该方式基本能够满足轻量级的B2C商城的运费模式.这里收集下国 ...

  4. 护眼色的RGB值和颜色代码汇总

    源: 网上流行护眼色的RGB值和颜色代码汇总 网上流行护眼色的RGB值和颜色代码 在搜索引擎搜“护眼色”,就会搜出一堆关于保护眼睛的屏幕颜色文章,说的统统是一种颜色,有点像绿豆沙的颜色.方法就是在屏幕 ...

  5. js 技巧 (六)弹窗代码汇总

    弹窗代码汇总 [0.超完美弹窗代码] 功能:5小时弹一次+背后弹出+自动适应不同分辩率+准全屏显示 代码: <script> function openwin(){ window.open ...

  6. 【南阳OJ分类之语言入门】80题题目+AC代码汇总

    小技巧:本文之前由csdn自动生成了一个目录,不必下拉一个一个去找,可通过目录标题直接定位. 本文转载自本人的csdn博客,复制过来的,排版就不弄了,欢迎转载. 声明: 题目部分皆为南阳OJ题目. 代 ...

  7. 常用的Java代码汇总

    1. 字符串有整型的相互转换           Java   1 2 <strong>Stringa=String.valueOf(2);   //integer to numeric ...

  8. echarts - 特殊需求实现代码汇总之【饼图】篇

    2018-07-24 15:36:43 起 - 饼图单项不同颜色的设置 效果图: 实现: 说明: 其实很简单,就是设置全局的color属性即可.color属性可以是一套数组,里边的样式以字符串格式设置 ...

  9. retinex相关代码汇总

    混合方法 SSR.m matlab代码,本来是RGB,改成了处理灰度图像的. %%%%%%%%%%%%%%%RGB normalisation%%%%%%%%%%%%%%%%%%%%%% %its c ...

随机推荐

  1. 最大子序列和 o(n)

    问题: 给定一整数序列A1, A2,... An (可能有负数),求A1~An的一个子序列Ai~Aj,使得Ai到Aj的和最大 例如:整数序列-2, 11, -4, 13, -5, 2, -5, -3, ...

  2. 转: PE rva to raw 虚拟偏移地址和文件物理偏移地址

    +---------+---------+---------+---------+---------+---------+| 段名称 虚拟地址 虚拟大小 物理地址 物理大小 标志 |+-------- ...

  3. JQuery中国省市区无刷新三级联动查询

    之前有写过用<Ajax控件来实现中国的省市区无刷新查询> 今天用JQuery来实现,用Ajax控件和JQuery的优缺点就先不说了. 效果图如下: 下面来结合代码来详细说明一下如何用JQu ...

  4. linux root不能用

    在操作查看vi /etc/passwd 查看用户信息时,不小心修改了root的用户名改成了eoot,这样在切换到普通用户后,就切不回root,即使明明知道用户名是eoot,也知道原来的root密码,但 ...

  5. Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum. For example: Given the below binary tree andsum =

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

  6. Java日期时间处理常用方法

    虽然是老生常谈,但整理出来还是有点用. 1.由字符串时间得到Date类型时间 // 由字符串时间得到Date类型时间 public static Date getDateFrom(String str ...

  7. javascript知识点记录(1)

    javascript一些知识点记录 1.substring,slice,substr的用法 substring 和slice 都有startIndex 和 endIndex(不包括endInex),区 ...

  8. iOS 并发编程指南

    iOS Concurrency Programming Guide iOS 和 Mac OS 传统的并发编程模型是线程,不过线程模型伸缩性不强,而且编写正确的线程代码也不容易.Mac OS 和 iOS ...

  9. CSS位置如何获取的

  10. 2的m次方 内存对齐

    在存储的时候,为了提高效率,一般都会让偏移量落在2的m次方的位置上,而且常有向上取整和向下取整两种需求.向下取整PALIGN_DOWN(x,align)  (x & (- align)) 这样 ...