_jobdu_1002
/************************************************************************/
/* 题目1002:Grading
时间限制:1 秒
内存限制:32 兆
特殊判题:否 题目描述:
Grading hundreds of thousands of Graduate Entrance Exams is a hard work.
It is even harder to design a process to make the results as fair as possible.
One way is to assign each exam problem to 3 independent experts.
If they do not agree to each other,
a judge is invited to make the final decision.
Now you are asked to write a program to help this process.
For each problem, there is a full-mark P and a tolerance T(<P) given.
The grading rules are:
P满分、T公差。
• A problem will first be assigned to 2 experts, to obtain G1 and G2.
If the difference is within the tolerance,
that is, if |G1 - G2| ≤ T,
this problem's grade will be the average of G1 and G2.
·如果G1和G2的差小于公差,则取平均。
• If the difference exceeds T, the 3rd expert will give G3.
·如果G1和G2差大于公差,则看G3.
• If G3 is within the tolerance with either G1 or G2, but NOT both,
then this problem's grade will be the average of G3 and the closest grade.
·如果G3与G1或G2中一个差小于公差,则取G3及相近一成绩的平均。
• If G3 is within the tolerance with both G1 and G2,
then this problem's grade will be the maximum of the three grades.
·如果G3与G1、G2差均小于公差。则最终成绩取最大值。
• If G3 is within the tolerance with neither G1 nor G2,
a judge will give the final grade GJ.
·如果G3与G1、G2差值均大于公差,则由GJ决定最终成绩。
输入:
Each input file may contain more than one test case.
Each case occupies a line containing six positive integers:
P, T, G1, G2, G3, and GJ, as described in the problem.
It is guaranteed that all the grades are valid,
that is, in the interval [0, P].
输出:
For each test case you should output the final grade of the problem in a line.
The answer must be accurate to 1 decimal place.
样例输入:
20 2 15 13 10 18
样例输出:
14.0
*/
/************************************************************************/ #include <iostream>
#include <iomanip>
using namespace std;
double sAbs(double x)
{
if(x>=)return x;
else return -x;
}
double max(double x, double y , double z)
{
return
(x>y)?
((x>z)?x:z)
:((y>z)?y:z);
}
int main()
{
double P,T,G1,G2,G3,GJ;
double temp,temp3,final;
bool isTwoLarger;
P = T = G1 = G2 = G3 = GJ = ;
isTwoLarger = false;
while(cin>>P>>T>>G1>>G2>>G3>>GJ)
{
if(T>P)cout<<"Data Error!"<<endl;
//((G1-G2)<=0)?(isTwoLarger = true):(isTwoLarger = false);
//if(isTwoLarger)temp = G2 - G1;
//else temp = G1 - G2;
//if(temp<=T)final = (G1+G2)/2.0;
//else if(isTwoLarger)
//{
// if(G3<=G1)
// if((G1-G3)>T)final = GJ;
// else final = (G3+G1)/2.0;
// else if(G3>G2)
// if((G3-G2)>T)final = GJ;
// else final = (G3+G2)/2.0;
// else
// {
// temp = G3-G1;
// temp3 = G2-G3;
// if((temp<=T)&&(temp3<=T))final = G2;
// else if((temp>T)&&(temp3>T))final = GJ;
// else if((temp3-temp)>0)
// final = (G3+G1)/2.0;
// else final = (G3+G2)/2.0;
// }
//}
//else
//{
// if(G3<=G2)
// if((G2-G3)>T)final = GJ;
// else final = (G3+G2)/2.0;
// else if(G3>G1)
// if((G3-G1)>T)final = GJ;
// else final = (G3+G1)/2.0;
// else
// {
// temp = G3-G2;
// temp3 = G1-G3;
// if((temp<=T)&&(temp3<=T))final = G1;
// else if((temp>T)&&(temp3>T))final = GJ;
// else if((temp3-temp)>0)
// final = (G3+G2)/2.0;
// else final = (G3+G1)/2.0;
// }
//}
if(sAbs(G1-G2)<=T)final = (G1+G2)/2.0;
else if((sAbs(G1-G3)<=T)&&(sAbs(G2-G3)<=T)) final = max(G1,G2,G3);
else if(sAbs(G2-G3)<=T) final = (G2+G3)/2.0;
else if(sAbs(G1-G3)<=T)final = (G1+G3)/2.0;
else final = GJ;
cout<<fixed<<::setprecision()<<final<<endl;
//printf("%.1f\n",final);
}
return ;
} //#include <iostream>
//#include <iomanip>
//#include <cmath>
//using namespace std;
//double getMax( double x, double y, double z)
//{
// return
// (x>y)?
// ((x>z)?x:z)
// :((y>z)?y:z);
//
//}
//int main()
//{
// double P,T,G1,G2,G3,GJ;
// double final;
// cin>>P>>T>>G1>>G2>>G3>>GJ;
// if(abs(G1-G2)<=T)
// {
// cout<<fixed<<::setprecision(1)<<(G1+G2)/2.0<<endl;
// }
// else if(abs(G3-G1)<=T&&abs(G3-G2)<=T)
// {
// cout<<fixed<<::setprecision(1)<<getMax(G1,G2,G3)<<endl;
// }
// else if(abs(G3-G2)<=T)
// {
// cout<<fixed<<::setprecision(1)<<(G3+G2)/2.0<<endl;
// }
// else if(abs(G3-G1)<=T)
// {
// cout<<fixed<<::setprecision(1)<<(G3+G1)/2.0<<endl;
// }
// else
// {
// cout<<fixed<<::setprecision(1)<<GJ<<endl;
// }
// return 0;
//
//}
_jobdu_1002的更多相关文章
随机推荐
- PHP+redis实现超迷你全文检索
2014年10月31日 11:45:39 情景: 我们平台有好多游戏, 运营的同事在查询某一款游戏的时候, 目前使用的是html的select下拉列表的展现形式, 运营的同事得一个个去找,然后选中,耗 ...
- smarty模版出现错误提示出现了不期望的字符
2013年7月5日 08:38:49 提示 unexpected "字符或字符串" 查找前边的代码,看是否有字符串单引号或双引号没有成对出现的情况
- (转)SQL server 容易让人误解的问题之 聚集表的物理顺序问题
对于MS SQL server 数据库,有几个容易让人产生误解的问题,对于这几个问题,即使很多 SQL server DBA 都有错误认识或者认识不充分,所以我想撰文几篇,把这些容易理解错误的问题前前 ...
- Linux下配置JDK
下面以CentOS为例,详细说一下Linux下配置JDK的过程 首先按照约定俗成的习惯,将jdk放在/usr/local/java下,首先进入/usr/local然后新建一个目录java 然后我们需要 ...
- 【贪心】最大乘积-贪心-高精度-java
问题 G: [贪心]最大乘积 时间限制: 1 Sec 内存限制: 128 MB提交: 34 解决: 10[提交][状态][讨论版] 题目描述 一个正整数一般可以分为几个互不相同的自然数的和,如3 ...
- codeforces 467C.George and Job 解题报告
题目链接:http://codeforces.com/problemset/problem/467/C 题目意思:给出一条含有 n 个数的序列,需要从中找出 k 对,每对长度为 m 的子序列,使得 找 ...
- sublime text 3 使用过程总结记录
自定义的设置: "save_on_focus_lost": true //在文件失去焦点的时候自动保存
- Machine Schedule(poj 1274)
题目大意:有n个奶牛和m个谷仓,现在每个奶牛有自己喜欢去的谷仓,并且它们只会去自己喜欢的谷仓吃东西,问最多有多少奶牛能够吃到东西 输入第一行给出n与m 接着n行 每行第一个数代表这个奶牛喜欢的谷仓的个 ...
- Win7中打开chm文件内容无法显示问题
今天下载了一个linux的2.6.22.14中文文档,下载后发现显示异常 www.2cto.com 怀疑是API的问题,连续从几个网站下来了很多版本,发现都存在这个问题,然后就开始自己的身上找原 ...
- callsession新功能版
可以getopt解析参数. 也实现了将参数用空格分隔,来传给进程. 注意string和LPSTR数据类型的转换方法: LPSTR(lpCmdLine.c_str()) #include <win ...