zouxy09@qq.com

http://blog.csdn.net/zouxy09

上一文对GraphCut做了一个了解,而现在我们聊到的GrabCut是对其的改进版,是迭代的Graph Cut。OpenCV中的GrabCut算法是依据《"GrabCut" - Interactive Foreground Extraction using Iterated Graph Cuts》这篇文章来实现的。该算法利用了图像中的纹理(颜色)信息和边界(反差)信息,只要少量的用户交互操作即可得到比较好的分割结果。那下面我们来了解这个论文的一些细节。另外OpenCV实现的GrabCut的源码解读见下一个博文。接触时间有限,若有错误,还望各位前辈指正,谢谢。

GrabCut是微软研究院的一个课题,主要功能是分割和抠图。个人理解它的卖点在于:

(1)你只需要在目标外面画一个框,把目标框住,它就可以完成良好的分割:

(2)如果增加额外的用户交互(由用户指定一些像素属于目标),那么效果就可以更完美:


(3)它的Border Matting技术会使目标分割边界更加自然和perfect:

当然了,它也有不完美的地方,一是没有任何一个算法可以放之四海而皆准,它也不例外,如果背景比较复杂或者背景和目标相似度很大,那分割就不太好了;二是速度有点慢。当然了,现在也有不少关于提速的改进。

OK,那看了效果,我们会想,上面这些效果是怎么达到的呢?它和Graph Cut有何不同?

(1)Graph Cut的目标和背景的模型是灰度直方图,Grab Cut取代为RGB三通道的混合高斯模型GMM;

(2)Graph Cut的能量最小化(分割)是一次达到的,而Grab Cut取代为一个不断进行分割估计和模型参数学习的交互迭代过程;

(3)Graph Cut需要用户指定目标和背景的一些种子点,但是Grab Cut只需要提供背景区域的像素集就可以了。也就是说你只需要框选目标,那么在方框外的像素全部当成背景,这时候就可以对GMM进行建模和完成良好的分割了。即Grab Cut允许不完全的标注(incomplete labelling)。

1、颜色模型

我们采用RGB颜色空间,分别用一个K个高斯分量(一取般K=5)的全协方差GMM(混合高斯模型)来对目标和背景进行建模。于是就存在一个额外的向量k = {k1, . . ., kn, . . ., kN},其中kn就是第n个像素对应于哪个高斯分量,kn∈ {1, . . . K}。对于每个像素,要不来自于目标GMM的某个高斯分量,要不就来自于背景GMM的某个高斯分量。

所以用于整个图像的Gibbs能量为(式7):

其中,U就是区域项,和上一文说的一样,你表示一个像素被归类为目标或者背景的惩罚,也就是某个像素属于目标或者背景的概率的负对数。我们知道混合高斯密度模型是如下形式:

所以取负对数之后就变成式(9)那样的形式了,其中GMM的参数θ就有三个:每一个高斯分量的权重π、每个高斯分量的均值向量u(因为有RGB三个通道,故为三个元素向量)和协方差矩阵(因为有RGB三个通道,故为3x3矩阵)。如式(10)。也就是说描述目标的GMM和描述背景的GMM的这三个参数都需要学习确定。一旦确定了这三个参数,那么我们知道一个像素的RGB颜色值之后,就可以代入目标的GMM和背景的GMM,就可以得到该像素分别属于目标和背景的概率了,也就是Gibbs能量的区域能量项就可以确定了,即图的t-link的权值我们就可以求出。那么n-link的权值怎么求呢?也就是边界能量项V怎么求?

边界项和之前说的Graph Cut的差不多,体现邻域像素m和n之间不连续的惩罚,如果两邻域像素差别很小,那么它属于同一个目标或者同一背景的可能性就很大,如果他们的差别很大,那说明这两个像素很有可能处于目标和背景的边缘部分,则被分割开的可能性比较大,所以当两邻域像素差别越大,能量越小。而在RGB空间中,衡量两像素的相似性,我们采用欧式距离(二范数)。这里面的参数β由图像的对比度决定,可以想象,如果图像的对比度较低,也就是说本身有差别的像素m和n,它们的差||zm-zn||还是比较低,那么我们需要乘以一个比较大的β来放大这种差别,而对于对比度高的图像,那么也许本身属于同一目标的像素m和n的差||zm-zn||还是比较高,那么我们就需要乘以一个比较小的β来缩小这种差别,使得V项能在对比度高或者低的情况下都可以正常工作。常数γ为50(经过作者用15张图像训练得到的比较好的值)。OK,那这时候,n-link的权值就可以通过式(11)来确定了,这时候我们想要的图就可以得到了,我们就可以对其进行分割了。

2、迭代能量最小化分割算法

Graph Cut的算法是一次性最小化的,而Grab Cut是迭代最小的,每次迭代过程都使得对目标和背景建模的GMM的参数更优,使得图像分割更优。我们直接通过算法来说明:

2.1、初始化
(1)用户通过直接框选目标来得到一个初始的trimap T,即方框外的像素全部作为背景像素TB,而方框内TU的像素全部作为“可能是目标”的像素。

(2)对TB内的每一像素n,初始化像素n的标签αn=0,即为背景像素;而对TU内的每个像素n,初始化像素n的标签αn=1,即作为“可能是目标”的像素。

(3)经过上面两个步骤,我们就可以分别得到属于目标(αn=1)的一些像素,剩下的为属于背景(αn=0)的像素,这时候,我们就可以通过这个像素来估计目标和背景的GMM了。我们可以通过k-mean算法分别把属于目标和背景的像素聚类为K类,即GMM中的K个高斯模型,这时候GMM中每个高斯模型就具有了一些像素样本集,这时候它的参数均值和协方差就可以通过他们的RGB值估计得到,而该高斯分量的权值可以通过属于该高斯分量的像素个数与总的像素个数的比值来确定。

2.2、迭代最小化

(1)对每个像素分配GMM中的高斯分量(例如像素n是目标像素,那么把像素n的RGB值代入目标GMM中的每一个高斯分量中,概率最大的那个就是最有可能生成n的,也即像素n的第kn个高斯分量):

(2)对于给定的图像数据Z,学习优化GMM的参数(因为在步骤(1)中我们已经为每个像素归为哪个高斯分量做了归类,那么每个高斯模型就具有了一些像素样本集,这时候它的参数均值和协方差就可以通过这些像素样本的RGB值估计得到,而该高斯分量的权值可以通过属于该高斯分量的像素个数与总的像素个数的比值来确定。):

(3)分割估计(通过1中分析的Gibbs能量项,建立一个图,并求出权值t-link和n-link,然后通过max flow/min cut算法来进行分割):

(4)重复步骤(1)到(3),直到收敛。经过(3)的分割后,每个像素属于目标GMM还是背景GMM就变了,所以每个像素的kn就变了,故GMM也变了,所以每次的迭代会交互地优化GMM模型和分割结果。另外,因为步骤(1)到(3)的过程都是能量递减的过程,所以可以保证迭代过程会收敛。

(5)采用border matting对分割的边界进行平滑等等后期处理。

2.3、用户编辑(交互)

(1)编辑:人为地固定一些像素是目标或者背景像素,然后再执行一次2.2中步骤(3);

(2)重操作:重复整个迭代算法。(可选,实际上这里是程序或者软件抠图的撤销作用)

总的来说,其中关键在于目标和背景的概率密度函数模型和图像分割可以交替迭代优化的过程。更多的细节请参考原文。

《“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts》

http://research.microsoft.com/en-us/um/people/ablake/papers/ablake/siggraph04.pdf

OpenCV实现了这个算法(没有后面的border matting过程),下一文我们再解读下它的源代码。

图像分割之(三)从Graph Cut到Grab Cut的更多相关文章

  1. 2019牛客多校三 A. Graph Games (图分块)

    大意: 给定无向图, 定义$S(x)$为$x$的邻接点集合. 每次操作翻转$[L,R]$范围的边, 询问$S(x)$与$S(y)$是否相等. 快速判断集合相等可以用$CF 799F$的技巧. 采用$h ...

  2. opencv 相关一个很好的博客

    http://blog.csdn.net/zouxy09/article/category/1218765 图像卷积与滤波的一些知识点 图像卷积与滤波的一些知识点zouxy09@qq.comhttp: ...

  3. 图像分割之(二)Graph Cut(图割)

    zouxy09@qq.com http://blog.csdn.net/zouxy09 上一文对主要的分割方法做了一个概述.那下面我们对其中几个比较感兴趣的算法做个学习.下面主要是Graph Cut, ...

  4. Graph Cut

    转自:http://blog.csdn.net/zouxy09/article/details/8532111 Graph Cut,下一个博文我们再学习下Grab Cut,两者都是基于图论的分割方法. ...

  5. Graph Cut 简介

    转:http://www.cnblogs.com/longdouhzt/archive/2012/05/11/2496373.html [简介] Graph Cuts 不等于 graph cut(如 ...

  6. mean shift 图像分割(一、二、三)

    https://blog.csdn.net/u011511601/article/details/72843247 MeanShift图像分割算法:大概是将复杂的背景,通过粗化提取整体信息,进而将图像 ...

  7. 【Linux命令】文本文件编辑命令10个(cat、more、less、head、tail、tr、wc、stat、cut、diff)

    目录 cat查看文档 more可分页查看文档 less相比较more功能更强大 head查看文档的前N行 tail查看文档的后N行或试试刷新查看 tr替换文本字符 wc统计文本行数 stat查看文档存 ...

  8. linux sort,uniq,cut,wc.

    文章转自 http://www.cnblogs.com/ggjucheng/archive/2013/01/13/2858385.html sort sort 命令对 File 参数指定的文件中的行排 ...

  9. [转]linux sort,uniq,cut,wc命令详解

    sort sort 命令对 File 参数指定的文件中的行排序,并将结果写到标准输出.如果 File 参数指定多个文件,那么 sort 命令将这些文件连接起来,并当作一个文件进行排序. sort语法 ...

随机推荐

  1. hdu Cup

    这题是道水题,用数学方法做比较简单.因为在做二分法的专题,所以这里采用二分的方式做,很简单,但是还是要用到数学的知识,比如三角形相似,圆台的 体积公式等. #include"iostream ...

  2. 几种进入mysql的方法

    1.首先mysql服务得打开(运行cmd命令也可以net start mysql) 2.运行cmd,打开mysq 3.mysql命令行打开mysql 4.图形管理工具,如phpMyadmin

  3. pdf转能编辑的word的方法

    方法一:用汉王ocr文字识别软件,扫描文字,一页一页扫描,复制粘贴 方法二:将pdf文件拷贝到没有pdf阅读器的电脑上,同时你的office是2013,用word打开你的pdf文档,根据他的提示操作, ...

  4. LiveUpdate Adminstrator配置手册

    第一种模式: LUA 从Symantec官网LiveUpdate服务器下载更新. .登陆LUA控制台 图1 .添加Symantec Endpoint Protecton v11.0 图2 3. 查看源 ...

  5. CSS3:动画大全

    和过渡的区别 页面不用明显js调用: 过渡:必须有:hover visited 等伪类调用.(本质还是事件驱动) 动画:页面加载上就可以. 页面有js调用: 7个参数,*为可选 animation-n ...

  6. ThinkPHP 学习笔记 ( 四 ) 数据库操作之关联模型 ( RelationMondel ) 和高级模型 ( AdvModel )

    一.关联模型 ( RelationMondel ) 1.数据查询 ① HAS_ONE 查询 创建两张数据表评论表和文章表: tpk_comment , tpk_article .评论和文章的对应关系为 ...

  7. 【CEDEC 2015】【夏日课堂】制作事宜技术篇,新手职员挑战VR Demo开发的真相

    日文原文地址 http://www.4gamer.net/games/277/G027751/20150829002/ PS:CEDEC 2015的PPT有些要到10月才有下载,目前的都是记者照片修图 ...

  8. 资源(1)----封装类(连接数据库mysql,分页)

    一,链接MYSQL数据库 class DBDA{ public $host="localhost";//服务器地址 public $uid="root";//数 ...

  9. sql_action

    CREATE TABLE w SELECT * FROM existing_table 2 日期x idm valuexm 日期x idn  valuexn 日期y idm  valueym 日期y ...

  10. How Browsers Work: Behind the scenes of modern web browsers

    http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/#Parser_Lexer_combination Grammars ...