GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4291    Accepted Submission(s): 1502

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

 
Source
 
Recommend
wangye
 

前几天用容斥原理写过这题:

http://www.cnblogs.com/kuangbin/p/3269182.html

速度比较慢。

用莫比乌斯反演快很多。

莫比乌斯反演资料:

http://wenku.baidu.com/view/542961fdba0d4a7302763ad5.html

http://baike.baidu.com/link?url=1qQ-hkgOwDJAH4xyRcEQVoOTmHbiRCyZZ-hEJxRBQO8G0OurXNr6Rh6pYj9fhySI0MY2RKpcaSPV9X75mQv0hK

这题求[1,n],[1,m]gcd为k的对数。而且没有顺序。

转化之后就是[1,n/k],[1,m/k]之间互质的数的个数。

用莫比乌斯反演就很容易求了。

为了去除重复的,去掉一部分就好了;

这题求的时候还可以分段进行优化的。

具体看我的下一篇博客吧!

 /* ***********************************************
Author :kuangbin
Created Time :2013/8/21 19:32:35
File Name :F:\2013ACM练习\专题学习\数学\莫比乌斯反演\HDU1695GCD.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int MAXN = ;
bool check[MAXN+];
int prime[MAXN+];
int mu[MAXN+];
void Moblus()
{
memset(check,false,sizeof(check));
mu[] = ;
int tot = ;
for(int i = ; i <= MAXN; i++)
{
if( !check[i] )
{
prime[tot++] = i;
mu[i] = -;
}
for(int j = ; j < tot; j++)
{
if(i * prime[j] > MAXN) break;
check[i * prime[j]] = true;
if( i % prime[j] == )
{
mu[i * prime[j]] = ;
break;
}
else
{
mu[i * prime[j]] = -mu[i];
}
}
}
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
int a,b,c,d,k;
Moblus();
scanf("%d",&T);
int iCase = ;
while(T--)
{
iCase++;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k == )
{
printf("Case %d: 0\n",iCase);
continue;
}
b /= k;
d /= k;
if(b > d)swap(b,d);
long long ans1 = ;
for(int i = ; i <= b;i++)
ans1 += (long long)mu[i]*(b/i)*(d/i);
long long ans2 = ;
for(int i = ;i <= b;i++)
ans2 += (long long)mu[i]*(b/i)*(b/i);
ans1 -= ans2/;
printf("Case %d: %I64d\n",iCase,ans1);
}
return ;
}

HDU 1695 GCD (莫比乌斯反演)的更多相关文章

  1. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  2. HDU 1695 GCD 莫比乌斯反演

    分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...

  3. hdu 1695 GCD 莫比乌斯

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  5. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. HDU 1695 GCD (莫比乌斯反演模板)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  7. hdu 1695: GCD 【莫比乌斯反演】

    题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就 ...

  8. D - GCD HDU - 1695 -模板-莫比乌斯容斥

    D - GCD HDU - 1695 思路: 都 除以 k 后转化为  1-b/k    1-d/k中找互质的对数,但是需要去重一下  (x,y)  (y,x) 这种情况. 这种情况出现 x  ,y ...

  9. ●HDU 1695 GCD

    题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd( ...

随机推荐

  1. javaweb学习之Servlet开发(二)

    javaweb学习总结(六)--Servlet开发(二) 一.ServletConfig讲解 1.1.配置Servlet初始化参数 在Servlet的配置文件web.xml中,可以使用一个或多个< ...

  2. DWR的Reverse Ajax技术实现

    DWR的逆向ajax其实主要包括两种模式:主动模式和被动模式.其中主动模式包括Polling和Comet两种,被动模式只有Piggyback这一种. 所谓的Piggyback指的是如果后台有什么内容需 ...

  3. mysql存储过程性能监控和分析

    公司当前版本的系统大量的使用了存储过程,有些复杂的过程套过程,一个主调用者可能最多调用其它几十个小的业务逻辑和判断,不要说这么做很不合理,在大陆,目前至少30%的证券交易系统代码都是用存储过程写业务逻 ...

  4. jquery TypeError: 'undefined' is not a function (evaluating 'elem.nodeName.toLowerCase()') [jquery.js:1904]错误原因

    今天,某个环境报了个js错误,TypeError: 'undefined' is not a function (evaluating 'elem.nodeName.toLowerCase()') [ ...

  5. ubuntu定时执行脚本(crond)

    如果发现您的系统里没有这个命令,请安装下面两个软件包. vixie-cron crontabs crontab 是用来让使用者在固定时间或固定间隔执行程序之用,换句话说,也就是类似使用者的时程表.-u ...

  6. Engine中执行gp工具返回的要素图层如何获取?

    来自:http://zhihu.esrichina.com.cn/?/question/12087 Engine中执行gp工具返回的[解决办法]:需要用gpUtils.DecodeFeatureLay ...

  7. EL表达式概述

    E L(Expression Language) 目的:为了使JSP写起来更加简单.表达式语言的灵感来自于 ECMAScript 和 XPath 表达式语言,它提供了在 JSP 中简化表达式的方法. ...

  8. android项目中gen目录不能自动生成R.java的原因

    1.调用的资源文件不存在:xml文件中有些控件没有关联引用:把项目缺少的文件加上,包括资源文件,如 values中的strings.xml或者图片等资源. 2.项目中缺少必须的系统文件(比如:defa ...

  9. 弃用的同步get和post请求

    #import "ViewController.h" #import "Header.h" @interface ViewController () <N ...

  10. 【原/转】ios指令集以及基于指令集的app包压缩策略

    iPhone指令集   本文所讲的内容都是围绕iPhone的CPU指令集(想了解ARM指令集的同学请点击这里),现在先说说不同型号的iPhone都使用的是什么指令集: ARMv8/ARM64 = iP ...