HDU 1695 GCD (莫比乌斯反演)
GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4291 Accepted Submission(s): 1502
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
1 3 1 5 1
1 11014 1 14409 9
Case 2: 736427
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
前几天用容斥原理写过这题:
http://www.cnblogs.com/kuangbin/p/3269182.html
速度比较慢。
用莫比乌斯反演快很多。
莫比乌斯反演资料:
http://wenku.baidu.com/view/542961fdba0d4a7302763ad5.html
这题求[1,n],[1,m]gcd为k的对数。而且没有顺序。
转化之后就是[1,n/k],[1,m/k]之间互质的数的个数。
用莫比乌斯反演就很容易求了。
为了去除重复的,去掉一部分就好了;
这题求的时候还可以分段进行优化的。
具体看我的下一篇博客吧!
/* ***********************************************
Author :kuangbin
Created Time :2013/8/21 19:32:35
File Name :F:\2013ACM练习\专题学习\数学\莫比乌斯反演\HDU1695GCD.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int MAXN = ;
bool check[MAXN+];
int prime[MAXN+];
int mu[MAXN+];
void Moblus()
{
memset(check,false,sizeof(check));
mu[] = ;
int tot = ;
for(int i = ; i <= MAXN; i++)
{
if( !check[i] )
{
prime[tot++] = i;
mu[i] = -;
}
for(int j = ; j < tot; j++)
{
if(i * prime[j] > MAXN) break;
check[i * prime[j]] = true;
if( i % prime[j] == )
{
mu[i * prime[j]] = ;
break;
}
else
{
mu[i * prime[j]] = -mu[i];
}
}
}
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
int a,b,c,d,k;
Moblus();
scanf("%d",&T);
int iCase = ;
while(T--)
{
iCase++;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k == )
{
printf("Case %d: 0\n",iCase);
continue;
}
b /= k;
d /= k;
if(b > d)swap(b,d);
long long ans1 = ;
for(int i = ; i <= b;i++)
ans1 += (long long)mu[i]*(b/i)*(d/i);
long long ans2 = ;
for(int i = ;i <= b;i++)
ans2 += (long long)mu[i]*(b/i)*(b/i);
ans1 -= ans2/;
printf("Case %d: %I64d\n",iCase,ans1);
}
return ;
}
HDU 1695 GCD (莫比乌斯反演)的更多相关文章
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- HDU 1695 GCD 莫比乌斯反演
分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...
- hdu 1695 GCD 莫比乌斯
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD (莫比乌斯反演模板)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- hdu 1695: GCD 【莫比乌斯反演】
题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就 ...
- D - GCD HDU - 1695 -模板-莫比乌斯容斥
D - GCD HDU - 1695 思路: 都 除以 k 后转化为 1-b/k 1-d/k中找互质的对数,但是需要去重一下 (x,y) (y,x) 这种情况. 这种情况出现 x ,y ...
- ●HDU 1695 GCD
题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd( ...
随机推荐
- C#按回车Enter使输入焦点自动跳到下一个TextBox的方法收集
在录入界面中,用户往往需要按回车键时光标自动跳入下一个文本框,以方便录入操作.在C#中实现该功能有多种方法,以下是小编收集的不使用TAB键,而直接用回车键将光标转到下一个文本框的实现方法. 一.利用W ...
- 用Perl编写Apache模块续二 - SVN动态鉴权实现SVNAuth 禅道版
代码地址:https://code.csdn.net/x3dcn/svnauth 以禅道项目管理系统的数据库结构为标准,实现了可用的svn authz验证功能. 以用户名.密码.项目的acl开发程度o ...
- [moka同学笔记]yii2.0缓存
1.控制器中CacheDemoController.php <?php /** * Created by PhpStorm. * User: moka同学 * Date: 2016/06/29 ...
- 中国快递包裹总量的预测-基于SARIMA模型
code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...
- C#内存占用大量资源的解决办法
昨天,独立完成了一个项目,一直运行起,起初运行内存为15Mb左右,但是发现内存以每秒2Mb的速度增加,吓了我一跳(注:我实习生,我的工作中第一个项目).从头找寻对象,再来dispose,弄得我晕头转向 ...
- eclipse:File->New没有Android Application Project的解决办法
我的Eclipse版本是:Kepler Service Release 1,截图: 解决步骤: 1.单击Window,选择Customize Perspective,如图: 2.勾选Android A ...
- 对抗静态分析——运行时修复dex
对抗静态分析——运行时修复dex 本文来源:i春秋社区-分享你的技术,为安全加点温度 零.写在前面 这个系列本来题目想写对抗反编译,可是想想对抗反编译的这个范围有点大,总结如下 灵魂作图 ...
- SharePoint 2013 手动删除爬网项目
本文介绍如何手动删除某些搜索项目,其实删除搜索项目并不常用,主要还是在刚刚完成爬网,就删除了某些项目,然后有比较敏感需要马上删除的时候.下面,就跟着图文简单了解下手动删除已爬网的项目吧. 1.配置好搜 ...
- 基础学习day06---面向对象二---static,类的初始化和调用顺序、单例模式
一.static关键字 1.1.static关键字 静态:static用法:是一个修饰符,用于修饰成员(成员变量,成员函数)static 修饰的内容,所有对象共享当成员被静态修饰后,就多了一个调用方式 ...
- IOS 网络浅析(一 网络监测~Reachability)
网络监测应用于各种需要连接网络的app设计,由于现在开发的app几乎都用到网络,因此,网络监测也成为了较为重点的知识,下面我给大家简单讲解一下网络监测的实际应用,依旧会有代码哦. 想要实现网络监测,可 ...