一、概述

1、定义:规划中变量部分或全部定义成整数是,称为整数规划。

2、分类:纯整数规划和混合整数规划。

3、特点:

(1)原线性规划有最优解,当自变量限制为整数后:

a、原最优解全是整数,那最优解仍成立

b、整数规划没有可行解

c、有可行解,但是不是原最优解

4、求解方法分类

(1)分支定界法

(2)割平面法

(3)隐枚举法

(4)匈牙利法

(5)蒙特卡洛法

二、分支定界法

1、算法如下(求解整数规划最大化问题)

MATLAB实现

function r=checkint(x)
%判断x(i)是不是整数了。是的话r(i)返回1,不是的话,返回0 %输入参数:x X向量
%输出参数:r R向量 for i=1:length(x)
if(min(abs(x(i)-floor(x(i))),abs(x(i)-ceil(x(i))))<1e-3)
r(i)=1;
else
r(i)=0;
end
end
function val=isrowinmat(arow,mat)
%用来判断mat中是否包含与arow一样的向量 %输入变量:arow 向量
% mat 矩阵
%输出变量:val 1表示有,0表示没有
val=0;
rows=size(mat,1);
for i=1:rows
temp=(mat(i,:)==arow);
if length(find(temp==0))==0
val=1;
return;
else
val=0;
end;
end
function [x,fval,exitflag,output,lambda]=linprogdis(ifint,f,A,b,Aeq,beq,lb,ub,x0,options)
% 用法
% [x,fval,exitflag,output,lambda]=lpint(ifint.f,A,b,Aeq,beq)
% [x,fval,exitflag,output,lambda]=lpint(ifint,f,A,b,Aeq,beq,lb)
% [x,fval,exitflag,output,lambda]=lpint(ifint,f,A,b,Aeq,beq,lb,ub)
% [x,fval,exitflag,output,lambda]=lpint(ifint,f,A,b,Aeq,beq,lb,ub,x0)
% [x,fval,exitflag,output,lambda]=lpint(ifint,f,A,b,Aeq,beq,lb,ub,x0,options) if nargin<10, options=[]; end
if nargin<9, x0=[]; end
if nargin<8, ub=inf*ones(size(f)); end
if nargin<7, lb=zeros(size(f)); end [x,fval,exitflag,output,lambda]=linprog(f,A,b,Aeq,beq,lb,ub,x0,options); if exitflag<=0 %表示线性规划没有最优解
return
end v1=find(ifint==1); %找到需要整数规划的变量的下标 temp=x(v1);%如果不是要求整数规划的就可以返回了。
if isempty(temp)
return
end v2=find(checkint(temp)==0);
if isempty(v2) %都是整数,得到最众解
return
end k=v1(v2(1)); temp1=zeros(1,length(f));
temp1(k)=1;
low=floor(x(k));
if isrowinmat([temp1,low],[A,b])==1
thisA=A;
thisb=b;
else
thisA=[A;temp1];
thisb=b;
thisb(end+1)=low;
end [x1,fval1,exitflag1,output1,lambda1]=linprogdis(ifint,f,thisA,thisb,Aeq,beq,lb,ub,x0,options); temp2=zeros(1,length(f));
temp2(k)=-1;
high=-ceil(x(k));
if isrowinmat([temp2,high],[A,b])==1
thisA=A;
thisb=b;
else
thisA=[A;temp2];
thisb=b;
thisb(end+1)=high;
end [x2,fval2,exitflag2,output2,lambda2]=linprogdis(ifint,f,thisA,thisb,Aeq,beq,lb,ub,x0,options); if (isempty(v2) && ((exitflag1>0 && exitflag2<=0 && fval<=fval)||(exitflag2>0 && exitflag1<=0 && fval<=fval2)||(exitflag1>0 && exitflag2>0 && fval<=fval1 && fval<=fval2)))
disp('error call');
return ; %表示都是整数
end if exitflag1>0&&exitflag2<=0
x=x1;
fval=fval1;
exitflag=exitflag1;
output=output1;
lambda=lambda1;
elseif exitflag1<=0&&exitflag2>0
x=x2;
fval=fval2;
exitflag=exitflag2;
output=output2;
lambda=lambda2;
elseif exitflag1>0 && exitflag2>0
if fval1<fval2
x=x1;
fval=fval1;
exitflag=exitflag1;
output=output1;
lambda=lambda1;
else
x=x2;
fval=fval2;
exitflag=exitflag2;
output=output2;
lambda=lambda2;
end
end

三、0-1型整数规划

1、定义:就是变量的取值只能是0-1,这样的话,其实我们可以将不同的整数规划转化成0-1规划。

2、实际问题:

这里我们就可以直接列出一个是0-1规划的方程,设的变量xi,“1”表示被选中,“0”表示没被选中

3、相互排斥的约束条件可以转化成同类型的。

四、求解整数规划的3种方法

(1)穷举法,这种比较土= =,但是最有效,而且某些情况只能穷举。

(2)过渡隐枚举法

a、先试探性求一个可行解X(随便带入求值)

b、然后根据是求极大值还是极小值,如果是求极大值,那么凡是目标值<X的解不必检验是否满足约束条件即可删除,如果是求极小值,那么凡是目标值>X不必检验是否满足约束条件就可满足。

c、改进新的过滤条件

d、然后验证目标值,最终求得。

PS:怎么说呢,这个方法就是一种变相的穷举,如果运气不好,就会变成全部都穷举,但是因为是先比较目标值,所以可以减少计算量,因而还是有效的(但是要注意不要犯反复测验的错误)、

(3)蒙特卡洛法(随机抽样法)

就是选择不穷举全部点,而是采用随机的方式来抽取样本估计整体,如果样本足够大,可信度是很大的。

例如求解此题:

MATLAB编程求解:

function [ f,g ] = mengte( x )
%MENGTE 键入整数线性规划的目标函数和约束条件
% f:指的是目标函数 向量
% g:指的是约束条件 向量 f=x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)^2-8*x(1)-2*x(2)-3*x(3)-x(4)-2*x(5); g=[sum(x)-400
x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-800
2*x(1)+x(2)+6*x(3)-200
x(3)+x(4)+5*x(5)-200]; end
rand('state',sum(clock));
p0=0;
tic
for i=1:10^6
x=99*rand(5,1);
x1=floor(x);x2=ceil(x);
[f,g]=mengte(x1);
if sum(g<=0)==4
if p0<=f
x0=x1;p0=f;
end
end
[f,g]=mengte(x2);
if sum(g<=0)==4
if p0<=f
x0=x2;p0=f;
end
end
end
x0,p0

五、0-1整数规划的求解

例如求解这个指派问题。

由于MATLAB里面有封装好的函数- -,我就不用C++再写了。。不过这个问题还是很容易写出来的,一些比赛题目也会出现的。

c=[3,8,2,10,3;
8,7,2,9,7;
6,4,2,7,5;
8,4,2,3,5;
9,10,6,9,10] c=c(:);%就是变成列向量(提取矩阵的方法)
a=zeros(10,25);
for i=1:5
a(i,(i-1)*5+1:1:5*i)=1;
a(5+i,i:5:25)=1;
end
b=ones(10,1);
[x,y]=bintprog(c,[],[],a,b);
x=reshape(x,[5,5]),y

建模算法(二)——整数规划的更多相关文章

  1. Python小白的数学建模课-04.整数规划

    整数规划与线性规划的差别只是变量的整数约束. 问题区别一点点,难度相差千万里. 选择简单通用的编程方案,让求解器去处理吧. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达 ...

  2. 建模算法(五)——图与网络

    (一)图与网络的基本概念 一.无向图 含有的元素为顶点,弧和权重,但是没有方向 二.有向图 含有的元素为顶点,弧和权重,弧具有方向. 三.有限图.无限图 顶点和边有限就是有限图,否则就是无限图. 四. ...

  3. TensorFlow 入门之手写识别(MNIST) softmax算法 二

    TensorFlow 入门之手写识别(MNIST) softmax算法 二 MNIST Fly softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...

  4. 分布式共识算法 (二) Paxos算法

    系列目录 分布式共识算法 (一) 背景 分布式共识算法 (二) Paxos算法 分布式共识算法 (三) Raft算法 分布式共识算法 (四) BTF算法 一.背景 1.1 命名 Paxos,最早是Le ...

  5. 建模算法(一)——线性规划

    一.解决问题 主要是安排现有资源(一定),取得最好的效益的问题解决,而且约束条件都是线性的. 二.数学模型 1.一般数学模型 2.MATLAB数学模型 其中c,x都是列向量,A,Aeq是一个合适的矩阵 ...

  6. 决策树-Cart算法二

    本文结构: CART算法有两步 回归树的生成 分类树的生成 剪枝 CART - Classification and Regression Trees 分类与回归树,是二叉树,可以用于分类,也可以用于 ...

  7. Design2:数据层次结构建模之二

    MSSql提供了一个新的数据类型 HierarchyID,用来处理层次结构的数据,这个数据类型是系统内置的CLR数据类型,不需要专门激活 SQL/CLR 功能即可使用.当需要表示各值之间的嵌套关系,并 ...

  8. Floyd算法(二)之 C++详解

    本章是弗洛伊德算法的C++实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明出处:http://www.cnblogs.c ...

  9. Dijkstra算法(二)之 C++详解

    本章是迪杰斯特拉算法的C++实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnbl ...

随机推荐

  1. 一个简单例子:贫血模型or领域模型

    转:一个简单例子:贫血模型or领域模型 贫血模型 我们首先用贫血模型来实现.所谓贫血模型就是模型对象之间存在完整的关联(可能存在多余的关联),但是对象除了get和set方外外几乎就没有其它的方法,整个 ...

  2. 对称加密和分组加密中的四种模式(ECB、CBC、CFB、OFB)

    一. AES对称加密: AES加密 分组 二. 分组密码的填充 分组密码的填充 e.g.: PKCS#5填充方式 三. 流密码:   四. 分组密码加密中的四种模式: 3.1 ECB模式 优点: 1. ...

  3. php-jquery-json-3

    memcache redis缓存技术mysql中的int和text是有区别的, , 按字节长度来记忆jquery中的选择器中的空格是运算符, 所以不能多也不能少, 非常严格层次运算符: 空格 大于 等 ...

  4. spring JTA多数据源事务管理详细教程

    <context:annotation-config /> <!-- 使用注解的包路径 --> <context:component-scan base-package= ...

  5. Sql分隔字符串方法--split

    SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO --DEClARE @str varchar(500)='a,b2,v5,d3,ew,2,3,dd' ...

  6. Android空间EditText的InputType属性

    android中inputType属性在EditText输入值时启动的虚拟键盘的风格有着重要的作用.这也大大的方便的操作.有时需要虚拟键盘只为字符或只为数字.所以inputType尤为重要. < ...

  7. ubuntu下git输出的颜色变化

    (这些文章都是从我的个人主页上粘贴过来的,大家也可以访问我的主页 www.iwangzheng.com) 11点进家门,感觉很温暖哦. 以下是如何在用git的时候清晰的看出关键字的方法. $ vim ...

  8. MYSQL随机抽取查询 MySQL Order By Rand()效率问题

    MYSQL随机抽取查询:MySQL Order By Rand()效率问题一直是开发人员的常见问题,俺们不是DBA,没有那么牛B,所只能慢慢研究咯,最近由于项目问题,需要大概研究了一下MYSQL的随机 ...

  9. JavaScript Math 对象方法

    Math 对象方法 方法 描述 abs(x) 返回数的绝对值. acos(x) 返回数的反余弦值. asin(x) 返回数的反正弦值. atan(x) 以介于 -PI/2 与 PI/2 弧度之间的数值 ...

  10. Search a 2D Matrix | & II

    Search a 2D Matrix II Write an efficient algorithm that searches for a value in an m x n matrix, ret ...