In most professional sporting events, cheerleaders play a major role in entertaining the spectators. Their
roles are substantial during breaks and prior to start of play. The world cup soccer is no exception.
Usually the cheerleaders form a group and perform at the centre of the eld. In addition to this group,
some of them are placed outside the side line so they are closer to the spectators. The organizers would
like to ensure that at least one cheerleader is located on each of the four sides. For this problem, we
will model the playing ground as an M N rectangular grid. The constraints for placing cheerleaders
are described below:
There should be at least one cheerleader on each of the four sides. Note that, placing a cheerleader
on a corner cell would cover two sides simultaneously.
There can be at most one cheerleader in a cell.
All the cheerleaders available must be assigned to a cell. That is, none of them can be left out.
The organizers would like to know, how many ways they can place the cheerleaders while maintaining
the above constraints. Two placements are different, if there is at least one cell which contains a
cheerleader in one of the placement but not in the other.
Input
The rst line of input contains a positive integer T 50, which denotes the number of test cases. T
lines then follow each describing one test case. Each case consists of three nonnegative integers, 2 M,
N 20 and K 500. Here M is the number of rows and N is the number of columns in the grid. K
denotes the number of cheerleaders that must be assigned to the cells in the grid.
Output
For each case of input, there will be one line of output. It will rst contain the case number followed by
the number of ways to place the cheerleaders as described earlier. Look at the sample output for exact
formatting. Note that, the numbers can be arbitrarily large. Therefore you must output the answers
modulo 1000007.
Sample Input
2
2 2 1
2 3 2
Sample Output
Case 1: 0
Case 2: 2

【题意】

n行m列网格放k个石子。有多少种方法?要求第一行,第一列,最后一行,最后一列必须有石子。

【题解】

利用容斥原理。可以转到求“第一行、第一列、最后一行、最后一列没有石子”的方案数。

枚举各个集合的组合时可以借助二进制进行枚举

1.第一种二进制枚举

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,m,sec,k;
int C[][];
const int mod=;
void pre()
{
memset(C,,sizeof(C));
for(int i=;i<=;i++)
C[i][]=; for(int i=;i<=;i++)
for(int j=;j<=i;j++)
C[i][j]=(C[i-][j]+C[i-][j-])%mod;
}
int main()
{
pre();
scanf("%d",&sec);
for(int z=;z<=sec;z++)
{
scanf("%d%d%d",&n,&m,&k);
int ans=;
for(int i=;i<;i++)
{
int b=,r=n,c=m;
if(i&){r--;b++;}
if(i&){r--;b++;}
if(i&){c--;b++;}
if(i&){c--;b++;} if(b%==)ans=(ans+C[r*c][k])%mod;
else ans=(ans+mod-C[r*c][k])%mod;
} printf("Case %d: %d\n",z,ans);
}
return ;
}

2.第二种二进制枚举

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int mod=1e6+; //记得加等号
int c[][];
void get() //求组合数模板 注意细节问题
{
memset(c,,sizeof(c));
for(int i=;i<=;i++)
c[i][]=;
for(int i=;i<=;i++)
for(int j=;j<=i;j++)
c[i][j]=(c[i-][j]+c[i-][j-])%mod;
}
int main()
{
get();
int t,cas=;
cin>>t;
while(t--)
{
int n,m,k;
cin>>n>>m>>k;//输入别忘了
int sum=;
for(int i=;i<(<<);i++)
{
int flag=,r=n,h=m;
for(int j=;j<;j++)
{
if(i&(<<j))
{
flag++;
if(j==||j==)
r--;
else
h--;
}
}
if(flag&)
sum=(sum-c[r*h][k]+mod)%mod; //c用过了 用h
else
sum=(sum+c[r*h][k]+mod)%mod;
}
printf("Case %d: %d\n",cas++,sum);
}
}

UVA11806-Cheerleaders(容斥原理+二进制)的更多相关文章

  1. UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)

    UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...

  2. HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举)

    HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举) 题意分析 求在[1,n-1]中,m个整数的倍数共有多少个 与 UVA.10325 ...

  3. UVa 11806 Cheerleaders (容斥原理+二进制表示状态)

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

  4. UVa11806 Cheerleaders(容斥原理)

    11806 - Cheerleaders Time limit: 2.000 seconds C Cheerleaders In most professional sporting events, ...

  5. 【UVA11806 Cheerleaders】 题解

    题目链接:https://www.luogu.org/problemnew/show/UVA11806 容斥原理+组合数 正着找合♂fa的不好找,那就用总方案数-不合♂fa的 #include < ...

  6. HDU 1796 How many integers can you find(容斥原理+二进制/DFS)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  7. UVA 11806 Cheerleaders (容斥原理)

    题意 一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法. 思路 设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A ...

  8. UVA.10325 The Lottery (组合数学 容斥原理 二进制枚举)

    UVA.10325 The Lottery (组合数学 容斥原理) 题意分析 首先给出一个数n,然后给出m个数字(m<=15),在[1-n]之间,依次删除给出m个数字的倍数,求最后在[1-n]之 ...

  9. UVA11806 Cheerleaders

    题意 PDF 分析 如果要求是某行某列没有石子很好算,就一个组合数. 然后要求某行某列有,就用容斥原理就行了. 时间复杂度\(O(k^2 + 16T)\) 代码 #include<iostrea ...

随机推荐

  1. 洛谷P1203 [USACO1.1]坏掉的项链Broken Necklace

    题目描述 你有一条由N个红色的,白色的,或蓝色的珠子组成的项链(3<=N<=350),珠子是随意安排的. 这里是 n=29 的二个例子: 第一和第二个珠子在图片中已经被作记号. 图片 A ...

  2. UVa 11988 Broken Keyboard (a.k.a. Beiju Text)

    题目复制太麻烦了,甩个链接 http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18693 直接模拟光标操作时间复杂度较高,所以用链 ...

  3. Spring学习8-Spring事务管理(AOP/声明式式事务管理)

    一.基础知识普及 声明式事务的事务属性: 一:传播行为 二:隔离级别 三:只读提示 四:事务超时间隔 五:异常:指定除去RuntimeException其他回滚异常.  传播行为: 所谓事务的传播行为 ...

  4. IIS6.0文件解析漏洞小结

    今天搞站,本来这个站是aspx的,webserver是IIS6.0的,进入后台之后,发现有一个上传图片的地方,于是,我就上传了一张asp/aspx的一句话图片木马,但是用菜刀连接的时候,没有成功get ...

  5. Android(Java):jni源代码

    public void onCreate(Bundle savedInstanceState)    {        super.onCreate(savedInstanceState);      ...

  6. 新浪微博客户端(17)-集成MJExtension

    使用MJExtension框架将字典转换为模型 DJHomeViewController.m /** 载入新的微博数据 */ - (void)loadNewStatues { AFHTTPSessio ...

  7. wireshark基本用法及过虑规则

     wireshark基本用法及过虑规则 标签: wireshark基本语法wireshark使用方法wireshark包过虑规则 2015-02-03 18:44 10711人阅读 评论(0) 收藏  ...

  8. 用 Java 实现断点续传 (HTTP)

    断点续传的原理 其实断点续传的原理很简单,就是在 Http 的请求上和一般的下载有所不同而已. 打个比方,浏览器请求服务器上的一个文时,所发出的请求如下: 假设服务器域名为 wwww.sjtu.edu ...

  9. cocos基础教程(5)数据结构介绍之cocos2d::Value

    1.概述 cocos2d::Valie 是一个包含了很多原生类型(int,float,double,bool,unsigned char,char* 和 std::string)外加 std::vec ...

  10. spring 注解的总结

    一.java内置注解 1.@Target 表示该注解用于什么地方,可能的 ElemenetType 参数包括: ElemenetType.CONSTRUCTOR   构造器声明 ElemenetTyp ...