瞬间移动

官方题解

题意:一个带边权无向图,加边以及询问在 x,x+b,...,x+(c−1)bx,x+b,...,x+(c-1)bx,x+b,...,x+(c−1)b 这些数中,有多少存在一条与之模 m 同余的从 u 到 v 的路径(可以不是简单路径)。

考场上读错题系列,以为边是有向的,然后就完全不可做了对不对……

由于是无向边,而且路径可以不是简单路径,那就意味着我们可以在联通块内随便绕圈。那就变成了一个数是否能在模m意义下被各圈大小线性表出的问题,加上这些数是用等差数列的形式给出,也就是同余方程,这就是一个同余方程组了嘛,然后拓欧解解就行了。

#include<cstdio>
#include<algorithm>
#define MN 1100000
#define ll int
using namespace std;
int read_p,read_ca,read_f;
inline int read(){
read_p=;read_ca=getchar();read_f=;
while(read_ca<''||read_ca>'') read_f=read_ca=='-'?-:read_f,read_ca=getchar();
while(read_ca>=''&&read_ca<='') read_p=read_p*+read_ca-,read_ca=getchar();
return read_p*read_f;
}
int n,m,Q,f[MN],opt,x,y,z,q,c,a,b;
ll d[MN],g[MN];
int gcd(int x,int y){return y?gcd(y,x%y):x;}
int gf(int x){
if (x==f[x]) return x;
int w=gf(f[x]);
(d[x]+=d[f[x]])%=m;
return f[x]=w;
}
int exgcd(int x,int y,int &a,int &b){
if (y){
int t=exgcd(y,x%y,b,a);
b-=x/y*a;
return t;
}else return a=,b=,x;
}
int main(){
n=read();m=read();Q=read();
for (int i=;i<=n;i++) f[i]=i,d[i]=,g[i]=m;
while (Q--){
opt=read();
if (opt==){
x=read(),y=read(),z=read();
int X=gf(x),Y=gf(y);
if (X==Y) g[X]=gcd(g[X],((z+d[x])%m+d[y])%m);else{
f[X]=y;(d[X]=d[x]+z)%=m;
g[Y]=gcd(g[Y],gcd(z*%m,g[X]));
}
}else{
x=read();y=read();q=read();c=read();z=read();
int X;
if ((X=gf(x))!=gf(y)) puts("");else{
q=(d[x]+d[y]-q)%m+m;q%=g[X];
if (q%(x=exgcd(c,g[X],a,b))){puts("");continue;}
y=g[X]/gcd(g[X],c);
a=1LL*q/x*a%y;if (a<) a+=y;z--;
printf("%d\n",(z-a+y)/y);
}
}
}
}

LibreOJ NOI Round #1 Day 1 B. 失控的未来交通工具的更多相关文章

  1. 「LibreOJ NOI Round #2」不等关系

    「LibreOJ NOI Round #2」不等关系 解题思路 令 \(F(k)\) 为恰好有 \(k\) 个大于号不满足的答案,\(G(k)\) 表示钦点了 \(k\) 个大于号不满足,剩下随便填的 ...

  2. LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿

    二次联通门 : LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 /* LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 dp 记录一下前驱 ...

  3. LibreOJ NOI Round #2 Day 1

    LibreOJ NOI Round #2 Day 1 T1: 别被定义弄晕了 反着做,A->1/A+B 取倒数没法做,所以变成a/b,维护2*2的矩阵 区间?不用线段树,不用倍增 存在逆矩阵,直 ...

  4. 失控的未来交通工具 (LOJ 508,带权并查集,数论)

    LOJ 508 失控的未来交通工具 (带权并查集 + 数论) $ solution: $ 很综合的一道难题.看了让人不知所措,数据范围又大,题目描述又不清晰.只能说明这道题有很多性质,或者很多优化. ...

  5. LOJ#508. 「LibreOJ NOI Round #1」失控的未来交通工具

    题意 一个带边权无向图,有两种操作:加边以及询问在\(x,x+b,...,x+(c-1)b\)这些数中,有多少个数存在至少一条与之模\(m\)同余的从\(u\)到\(v\)的路径(可以不是简单路径). ...

  6. 「LibreOJ NOI Round #1」验题

    麻烦的动态DP写了2天 简化题意:给树,求比给定独立集字典序大k的独立集是哪一个 主要思路: k排名都是类似二分的按位确定过程. 字典序比较本质是LCP下一位,故枚举LCP,看多出来了多少个独立集,然 ...

  7. #509. 「LibreOJ NOI Round #1」动态几何问题

    下面给出部分分做法和满分做法 有一些奇妙的方法可以拿到同样多的分数,本蒟蒻只能介绍几种常见的做法 如果您想拿18分左右,需要了解:质因数分解 如果您想拿30分左右,需要了解:一种较快的筛法 如果您想拿 ...

  8. #510. 「LibreOJ NOI Round #1」动态几何问题

    题目: 题解: 几何部分,先证明一下 \(KX = \sqrt{a},YL = \sqrt{b}\) 设左侧的圆心为 \(O\) ,连接 \(OK\) ,我们有 \(OK = r\). 然后有 \(r ...

  9. #507. 「LibreOJ NOI Round #1」接竹竿 dp

    题目: 题解: 我们考虑把每对花色相同的牌看作区间. 那么如果我们设 \(f_i\) 表示决策在 \([1,i]\) 内的最优答案. 那么有 \(f_i = max\{max\{(f_{j-1}+\s ...

随机推荐

  1. Keras的安装与配置

    Keras是由Python编写的基于Tensorflow或Theano的一个高层神经网络API.具有高度模块化,极简,可扩充等特性.能够实现简易和快速的原型设计,支持CNN和RNN或者两者的结合,可以 ...

  2. Oracle11g不能导出空表问题

    ORACLE 11g 用exp命令导出库文件备份时,发现只能导出来一部分表而且不提示错误,之前找不到解决方案只能把没导出来的表重新建建立.后来发现是所有的空表都没有导出来.于是想好好查查,因为在以前的 ...

  3. 【Hdu2089】不要62(数位DP)

    Description 题目大意:给定区间[n,m],求在n到m中没有"62"或"4"的数的个数. 如62315包含62,88914包含4,这两个数都是不合法的 ...

  4. VS2012 未找到与约束ContractName Microsoft.VisualStudio.Text.ITextDocumentFactoryService

    最近新换了系统还真是问题多多呀!! 系统更新补丁后打开 VS2012 ,新建C#项目的时候出现这个问题 VS2012 未找到与约束ContractName Microsoft.VisualStudio ...

  5. 绝世emacs配置for Ubuntu

    反正过不了几天就要退役了,把emacs配置放出来造福(祸害)大众? 浓浓的OIER风格,除了方便打代码就没别的用处(F8并不这样认为?),只可惜windows下的弄丢了,只有Ubuntu下的. F1不 ...

  6. bzoj 4199 [NOI2015]寿司晚宴

    Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同 ...

  7. ELK日志检索并邮件微信通知

    简介 脚本为通过api检索日志内容,并通过邮件或者微信发送出来. 脚本 index检索脚本 #!/usr/bin/env python # coding:utf-8 from elasticsearc ...

  8. 《MYSQL》----字符串的复杂函数,检索的七-天-排-重

    接到了一个新的需求,拿到需求的时候瞬间有点头大,因为实在是有些棘手. 我们这个系统本身是个接口系统,总接口数大概在200个左右.外部会有很多用户在 不同的时间拿着不同参数去调我们的这些接口,用户的调集 ...

  9. C语言中static关键字的用法

    C记得还是大一时学的,现在觉得好久没用了,又捧起来看看.今天刚看到有关static关键字,仔细地看了一遍<C和指针>这本书中的解释,现在觉得清楚多了. 首先,我们将static关键字,修饰 ...

  10. sql sever模糊查询和聚合函数

    使用is null 的时候 要确保 查询的列 可以为空! null:  01.标识  空值  02.不是0,也不是空串""  03.只能出现在定义 允许为null的字段  04.只 ...