Bone Collector II

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 4739    Accepted Submission(s): 2470

Problem Description
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:
Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602
Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.
If the total number of different values is less than K,just ouput 0.
 
Input
The first line contain a integer T , the number of cases. Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
 
Output
One integer per line representing the K-th maximum of the total value (this number will be less than 231).
 
Sample Input
3
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1
 
Sample Output
12
2
0
 
Author
teddy
 
Source
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2639

题目大意:

见之前的收集骨头的博客,题意类似,给定背包容量,骨头的个数和每个骨头的价值,这次不是求在背包容量允许的情况下,最多装的价值,而是求在背包容量内,可以装的第k大价值,如果没有第k个最大值,那么输出0

输入包括多组样例,第一行输入一个T,样例的个数,接下来每个样例都有三行,第一行包括三个整数,N,V,K,分别代表骨头的个数,背包的容量,我们需要输出的第K个最大值,第二行包括N个数,分别代表骨头的数量和接下来一行有N个数,分别表示每种骨头的价值。

输出第K个最大价值,每个样例输出一行

思路:简单的01背包基础上做,要求的是第K个最大值,那么不用dp[j]=max(dp[j],dp[j-w[i]]+v[i])的状态转移方程,而是将两个值都记录下来,用for循环走一遍,记录下,容量为1到M的各个最大价值,dp[i][j]表示当背包容量为i时的第j个最大价值,最后只需要输出dp[m][k]即可!

下面给出AC代码:

 #include <bits/stdc++.h>
using namespace std;
int w[];
int v[];
int dp[][];
int d1[];
int d2[];
int main()
{
int t,n,m,k,x,y,z,p;
scanf("%d",&t);
while(t--)
{
memset(w,,sizeof(w));
memset(v,,sizeof(v));
memset(dp,,sizeof(dp));
memset(d1,,sizeof(d1));
memset(d2,,sizeof(d2));
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=n;i++)
scanf("%d",&v[i]);
for(int i=;i<=n;i++)
scanf("%d",&w[i]);
for(int i=;i<=n;i++)//01背包变形
{
for(int j=m;j>=w[i];j--)
{
for(p=;p<=k;p++)
{
d1[p]=dp[j][p];
d2[p]=dp[j-w[i]][p]+v[i];
}
d1[p]=d2[p]=-;
x=y=z=;
while((d1[x]!=-||d2[y]!=-)&&z<=k)
{
if(d1[x]>d2[y])
{
dp[j][z]=d1[x];
x++;
}
else
{
dp[j][z]=d2[y];
y++;
}
if(dp[j][z-]!=dp[j][z])
z++;
}
}
}
printf("%d\n",dp[m][k]);
}
return ;
}

HDU 2639 Bone Collector II(01背包变形【第K大最优解】)的更多相关文章

  1. HDU 2639 Bone Collector II (01背包,第k解)

    题意: 数据是常规的01背包,但是求的不是最大容量限制下的最佳解,而是第k佳解. 思路: 有两种解法: 1)网上普遍用的O(V*K*N). 2)先用常规01背包的方法求出背包容量限制下能装的最大价值m ...

  2. hdu–2369 Bone Collector II(01背包变形题)

    题意:求解01背包价值的第K优解. 分析: 基本思想是将每个状态都表示成有序队列,将状态转移方程中的max/min转化成有序队列的合并. 首先看01背包求最优解的状态转移方程:\[dp\left[ j ...

  3. HDU 2639 Bone Collector II(01背包变型)

    此题就是在01背包问题的基础上求所能获得的第K大的价值. 详细做法是加一维去推当前背包容量第0到K个价值,而这些价值则是由dp[j-w[ i ] ][0到k]和dp[ j ][0到k]得到的,事实上就 ...

  4. HDU - 2639 Bone Collector II (01背包第k大解)

    分析 \(dp[i][j][k]\)为枚举到前i个物品,容量为j的第k大解.则每一次状态转移都要对所有解进行排序选取前第k大的解.用两个数组\(vz1[],vz2[]\)分别记录所有的选择情况,并选择 ...

  5. HDOJ(HDU).2602 Bone Collector (DP 01背包)

    HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...

  6. hdu 2639 Bone Collector II(01背包 第K大价值)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  7. HDU 2639 Bone Collector II【01背包 + 第K大价值】

    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...

  8. hdu 2639 Bone Collector II

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  9. hdu 2639 Bone Collector II (01背包,求第k优解)

    这题和典型的01背包求最优解不同,是要求第k优解,所以,最直观的想法就是在01背包的基础上再增加一维表示第k大时的价值.具体思路见下面的参考链接,说的很详细 参考连接:http://laiba2004 ...

随机推荐

  1. iOS实现类似QQ的好友列表,自由展开折叠(在原来TableView的基础上添加一个字典,一个Button)

    //直接代码 只包含 折叠展开字典的处理搭建#import "CFViewController.h" @interface CFViewController ()<UITab ...

  2. java二维码生成代码

    QRCodeUtil.encode(text, "D:/004.jpg", "D:", true, "exp");// 这个方法的第一个参数 ...

  3. [转]winform 自动伸缩控件xpandercontrols 使用说明

    链接地址:http://blog.sina.com.cn/s/blog_b5b004920101f5h3.html

  4. 历年NOIP选题题解汇总

    联赛前上vijos板刷往年联赛题,使用在线编辑编写代码,祝我rp++. 废话不多说,挑比较有意思的记一下. 题目是按照年份排序的,最早只到了03年. 有些题目因为 我还没写/很早之前写的忘了 所以就没 ...

  5. vue 自定义指令directive

    //自定义指令:directive 的传参--可以数据也可以是字符串 Vue.directive('scroll', function (binding) { window.addEventListe ...

  6. 在linux环境下编译运行OpenCV程序的两种方法

    原来以为在Ubuntu下安装好了OpenCV之后,自己写个简单的程序应该很容易吧,但是呢,就是为了编译一个简单的显示图片的程序我都快被弄崩溃了. 在谷歌和上StackOverFlow查看相关问题解答之 ...

  7. 基于Docker的ELK日志平台搭建

    1.安装Docker Docker可简单理解为一个轻量级的虚拟机.Docker对进程进行封装隔离,隔离的进程独立于宿主和其它的隔离的进程,因此也称其为容器.Docker和传统虚拟化方式的不同.传统虚拟 ...

  8. 6、投资的一些思考 - CEO之公司管理经验谈

    对于投资,前面笔者写过一个文:IT人经济思维之投资 - 创业与投资系列文章 ,里面列举了笔者自己做过的投资方面的内容.今天就说说公司投资的一些思考问题. 公司投资的问题,笔者还是那句话:关键是找出适合 ...

  9. Composer创建和发送HTTP Request

    Fiddler Composer的功能就是用来创建HTTP Request 然后发送. 你可以自定义一个Request, 也可以手写一个Request, 你甚至可以在Web会话列表中拖拽一个已有的Re ...

  10. 19 Zabbix 利用Scripts栏目对Hosts远程执行命令

    点击返回:自学Zabbix之路 19 Zabbix 利用Scripts栏目对Hosts远程执行命令 在Monitoring板块中,有Host出现的地方,单击Host按钮后,都可以执行对Host远程执行 ...