HDU 2639 Bone Collector II(01背包变形【第K大最优解】)
Bone Collector II
Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 4739 Accepted Submission(s): 2470
Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602
Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.
If the total number of different values is less than K,just ouput 0.
题目大意:
见之前的收集骨头的博客,题意类似,给定背包容量,骨头的个数和每个骨头的价值,这次不是求在背包容量允许的情况下,最多装的价值,而是求在背包容量内,可以装的第k大价值,如果没有第k个最大值,那么输出0
输入包括多组样例,第一行输入一个T,样例的个数,接下来每个样例都有三行,第一行包括三个整数,N,V,K,分别代表骨头的个数,背包的容量,我们需要输出的第K个最大值,第二行包括N个数,分别代表骨头的数量和接下来一行有N个数,分别表示每种骨头的价值。
输出第K个最大价值,每个样例输出一行
思路:简单的01背包基础上做,要求的是第K个最大值,那么不用dp[j]=max(dp[j],dp[j-w[i]]+v[i])的状态转移方程,而是将两个值都记录下来,用for循环走一遍,记录下,容量为1到M的各个最大价值,dp[i][j]表示当背包容量为i时的第j个最大价值,最后只需要输出dp[m][k]即可!
下面给出AC代码:
#include <bits/stdc++.h>
using namespace std;
int w[];
int v[];
int dp[][];
int d1[];
int d2[];
int main()
{
int t,n,m,k,x,y,z,p;
scanf("%d",&t);
while(t--)
{
memset(w,,sizeof(w));
memset(v,,sizeof(v));
memset(dp,,sizeof(dp));
memset(d1,,sizeof(d1));
memset(d2,,sizeof(d2));
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=n;i++)
scanf("%d",&v[i]);
for(int i=;i<=n;i++)
scanf("%d",&w[i]);
for(int i=;i<=n;i++)//01背包变形
{
for(int j=m;j>=w[i];j--)
{
for(p=;p<=k;p++)
{
d1[p]=dp[j][p];
d2[p]=dp[j-w[i]][p]+v[i];
}
d1[p]=d2[p]=-;
x=y=z=;
while((d1[x]!=-||d2[y]!=-)&&z<=k)
{
if(d1[x]>d2[y])
{
dp[j][z]=d1[x];
x++;
}
else
{
dp[j][z]=d2[y];
y++;
}
if(dp[j][z-]!=dp[j][z])
z++;
}
}
}
printf("%d\n",dp[m][k]);
}
return ;
}
HDU 2639 Bone Collector II(01背包变形【第K大最优解】)的更多相关文章
- HDU 2639 Bone Collector II (01背包,第k解)
题意: 数据是常规的01背包,但是求的不是最大容量限制下的最佳解,而是第k佳解. 思路: 有两种解法: 1)网上普遍用的O(V*K*N). 2)先用常规01背包的方法求出背包容量限制下能装的最大价值m ...
- hdu–2369 Bone Collector II(01背包变形题)
题意:求解01背包价值的第K优解. 分析: 基本思想是将每个状态都表示成有序队列,将状态转移方程中的max/min转化成有序队列的合并. 首先看01背包求最优解的状态转移方程:\[dp\left[ j ...
- HDU 2639 Bone Collector II(01背包变型)
此题就是在01背包问题的基础上求所能获得的第K大的价值. 详细做法是加一维去推当前背包容量第0到K个价值,而这些价值则是由dp[j-w[ i ] ][0到k]和dp[ j ][0到k]得到的,事实上就 ...
- HDU - 2639 Bone Collector II (01背包第k大解)
分析 \(dp[i][j][k]\)为枚举到前i个物品,容量为j的第k大解.则每一次状态转移都要对所有解进行排序选取前第k大的解.用两个数组\(vz1[],vz2[]\)分别记录所有的选择情况,并选择 ...
- HDOJ(HDU).2602 Bone Collector (DP 01背包)
HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...
- hdu 2639 Bone Collector II(01背包 第K大价值)
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- HDU 2639 Bone Collector II【01背包 + 第K大价值】
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...
- hdu 2639 Bone Collector II
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- hdu 2639 Bone Collector II (01背包,求第k优解)
这题和典型的01背包求最优解不同,是要求第k优解,所以,最直观的想法就是在01背包的基础上再增加一维表示第k大时的价值.具体思路见下面的参考链接,说的很详细 参考连接:http://laiba2004 ...
随机推荐
- MySQL操作时间的函数集
求两个Timestamp之间的秒差值: select TIMESTAMPDIFF(SECOND,TIMESTAMP("2017-03-01 07:58:20"),timestamp ...
- Windows编程之进程遍历(C++实现)
Windows编程之进程遍历 PS: 主要扣代码使用,直接滑动到最下面使用. 遍历进程需要几个API,和一个结构体 1.创建进程快照 2.遍历首次进程 3.继续下次遍历 4.进程信息结构体 API 分 ...
- bzoj 4013: [HNOI2015]实验比较
Description 小D 被邀请到实验室,做一个跟图片质量评价相关的主观实验.实验用到的图片集一共有 N 张图片,编号为 1 到 N.实验分若干轮进行,在每轮实验中,小 D会被要求观看某两张随机选 ...
- Handwritten Parsers & Lexers in Go (翻译)
用go实现Parsers & Lexers 在当今网络应用和REST API的时代,编写解析器似乎是一种垂死的艺术.你可能会认为编写解析器是一个复杂的工作,只保留给编程语言设计师,但我想消除这 ...
- [数据清洗]- Pandas 清洗“脏”数据(三)
预览数据 这次我们使用 Artworks.csv ,我们选取 100 行数据来完成本次内容.具体步骤: 导入 Pandas 读取 csv 数据到 DataFrame(要确保数据已经下载到指定路径) D ...
- Java UDP实现聊天功能代码
我以前经常写的是基于TCP的网络编程,由于TCP建立连接鼻血要经过三次握手连接,服务器端需要阻塞式等待客户端的连接.而UDP则是可以直接向目的地址的目的端口上发送数据包,由于它只负责发送出去就好,不管 ...
- permission denied for window type 2003
今天在做系统悬浮窗的时候出现权限拒绝,类型是2003,这里要说下,做系统悬浮窗需要申请权限,6.0以上的 还需要动态申请下,这里我就不过多描述了, 我在申请完权限后仍然不行,这里主要是出现在了这个类型 ...
- 房上的猫:了解java与学习java前的准备
一.java 概述: 1.通常指完成某些事情的一种既定方式和过程 2.程序可以看做对一系列动作执行过程的描述 3.计算机按照某种顺序完成一系列指令的集合称为程序 4.计算机仅识别二进制低级语言 ...
- TensorFlow常用的函数
TensorFlow中维护的集合列表 在一个计算图中,可以通过集合(collection)来管理不同类别的资源.比如通过 tf.add_to_collection 函数可以将资源加入一个 或多个集合中 ...
- Python并发实践_02_通过yield实现协程
python中实现并发的方式有很多种,通过多进程并发可以真正利用多核资源,而多线程并发则实现了进程内资源的共享,然而Python中由于GIL的存在,多线程是没有办法真正实现多核资源的. 对于计算密集型 ...