DATA VISUALIZATION – PART 1
Introduction to Data Visualization – Theory, R & ggplot2
The topic of data visualization is very popular in the data science community. The market size for visualization products is valued at $4 Billion and is projected to reach $7 Billion by the end of 2022 according to Mordor Intelligence. While we have seen amazing advances in the technology to display information, the understanding of how, why, and when to use visualization techniques has not kept up. Unfortunately, people are often taught how to make a chart before even thinking about whether or not it’s appropriate.
In short, are you adding value to your work or are you simply adding this to make it seem less boring? Let’s take a look at some examples before going through the Stoltzmaniac Data Visualization Philosophy.
I have to give credit to Junk Charts – it inspired a lot of this post.
One author at Vox wanted to show the cause of death in all of Shakespeare
Is this not insane!?!?!
Using a legend instead of data callouts is the only thing that could have made this worse. The author could easily have used a number of other tools to get the point across. While wordles are not ideal for any work requiring exact proportions, it does make for a great visual in this article.Junk Charts Article.
To be clear, I’m not close to being perfect when it comes to visualizations in my blog. The sizes, shapes, font colors, etc. tend to get out of control and I don’t take the time in R to tinker with all of the details. However, when it comes to displaying things professionally, it has to be spot on! So, I’ll walk through my theory and not worry too much about aesthetics (save that for a time when you’re getting paid).
The Good, The Bad, The Ugly
“The Good” visualizations:
- Clearly illustrate a point
- Are tailored to the appropriate audience
- Analysts may want detail
- Executives may want a high-level view
- Are tailored to the presentation medium
- A piece in an academic journal can be analyzed slowly and carefully
- A slide in front of 5,000 people in a conference will be glanced at quickly
- Are memorable to those who care about the material
- Make an impact which increases the understanding of the subject matter
“The Bad” visualizations:
- Are difficult to interpret
- Are unintentionally misleading
- Contain redundant and boring information
“The Ugly” visualizations:
- Are almost impossible to interpret
- Are filled with completely worthless information
- Are intentionally created to mislead the audience
- Are inaccurate
Coming soon:
- Introduction to the ggplot2 in R and how it works
- Determining whether or not you need a visualization
- Choosing the type of plot to use depending on the use case
- Visualization beyond the standard charts and graphs
As always, the code used in this post is on my GitHub
转自:https://www.stoltzmaniac.com/data-visualization-part-1/
DATA VISUALIZATION – PART 1的更多相关文章
- 7 Tools for Data Visualization in R, Python, and Julia
7 Tools for Data Visualization in R, Python, and Julia Last week, some examples of creating visualiz ...
- Data Visualization 课程 笔记1
对数据可视化比较有兴趣,因此最近在看coursera上伊利诺伊大学香槟分校的数据可视化课程,做了一些笔记. 1. 定义 Data visualization is a high bandwidth c ...
- DATA VISUALIZATION – PART 2
A Quick Overview of the ggplot2 Package in R While it will be important to focus on theory, I want t ...
- Data Visualization – Banking Case Study Example (Part 1-6)
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...
- D3.js & Data Visualization & SVG
D3.js & Data Visualization & SVG https://davidwalsh.name/learning-d3 // import {scaleLinear} ...
- charts & data visualization
charts & data visualization https://www.sitepoint.com/15-best-javascript-charting-libraries/ Can ...
- 学习笔记之Bokeh Data Visualization | DataCamp
Bokeh Data Visualization | DataCamp https://www.datacamp.com/courses/interactive-data-visualization- ...
- 学习笔记之Introduction to Data Visualization with Python | DataCamp
Introduction to Data Visualization with Python | DataCamp https://www.datacamp.com/courses/introduct ...
- 学习笔记之Data Visualization
Data visualization - Wikipedia https://en.wikipedia.org/wiki/Data_visualization Data visualization o ...
随机推荐
- 读书笔记 effective c++ Item 47 使用traits class表示类型信息
STL主要由为容器,迭代器和算法创建的模板组成,但是也有一些功能模板.其中之一叫做advance.Advance将一个指定的迭代器移动指定的距离: template<typename IterT ...
- Coordinator节点
Coordinator节点 Coordinator 节点主要负责segment 的管理和分配.更具体的说,它同通过配置往historical 节点 load 或者 drop segment .Coo ...
- hadoop、Storm该选哪一个
如果hadoop.Storm还感觉混要,那么此篇文章将帮助你把他们完全区分 可以带着下面问题来阅读本文章: 1.hadoop.Storm各是什么运算 2.Storm为什么被称之为流式计算系统 3.ha ...
- NPOI操作类
using System; using System.Data; using System.Configuration; using System.Web; using System.Web.Secu ...
- 【Android N_启示录】
[啰嗦~]自从接触Android以来,大概也有3年时间,基本是跟着项目走,做过的东西不算多也不算少,从当初做上层应用到系统级应用,再到Framework,以及后来接触功耗.性能优化等需求.给我的感觉就 ...
- seajs加载angularjs
angularjs是自动完成模块的控制的,而seajs加载模块是异步的,所以不做修改,直接seajs加载angularjs会出错. 在这里讲下自己的解决方法 一.需要把ng-ap ...
- 如何有效快速提高Java服务端开发人员的技术水平?
我相信很多工作了3-5年的开发人员都会经常问自己几个问题: 1.为什么总是感觉技术没有质的提高? 2.如何能够有效和快速的提高自身的技术水平? 3.如何进入到一个牛逼的大公司,认识牛逼的人? 这篇文章 ...
- 《HelloGitHub》第 13 期
公告 本期推荐的项目到达了 30 个,里面少不了对本项目支持的小伙伴们,再次感谢大家. 本次排版尝试:根据分类项目名排序,为了让大家方便查阅.如果有任何建议和意见欢迎留言讨论 临近 5.1 假期,所以 ...
- C#中 dynamic 关键字
所有表达式都能隐式的转换成dynamic,因为所有的表达式最终都能生成从Object派生出的类型. ; int b = a; //隐式转换错误 int b2 = (int)a; ; int b3 ...
- 对于Bootstrap的介绍以及如何使用
Bootstrap是HTML.CSS 和 JS 框架,用于开发响应式布局.移动设备优先的 WEB 项目. 可以自动适配任何设备,解决了响应式实现的繁琐问题,可以修改其中的各种样式,同样,其内部功能的强 ...