0 推荐技术
     1)协同过滤:
               (1)基于user的协同过滤:根据历史日志中用户年龄,性别,行为,偏好等特征计算user之间的相似度,根据相似user对item的评分推荐item。缺点:新用户冷启动问题和数据稀疏不能找到置信的相似用户进行推荐。
               (2)基于item的协同过滤:根据item维度的特征计算item之间的相似度,推荐user偏好item相似的item。
               (3)基于社交网络:根据user社交网络亲密关系,推荐亲密的user偏好的item。
               (4)基于模型:LR模型,user和item等维度特征输入给模型训练,label是show:clk,根据预估的pctr进行推荐。DNN模型:见下面。
     2)基于内容的过滤:抽取item的有意义描述特征,推荐user偏好item相似度高的item,个人觉得像基于item的过滤。
     3)组合推荐:根据具体问题,组合其它几种技术进行推荐。
 
 
1 DNN推荐模型
     1)特征工程:
               用户维度:用户id,性别,年龄和职业。
               电影维度:电影id,类型和名称。
     2)模型设计:
          user和item维度特征embedding,各自的全连接网络结构,最顶层是两个维度网络结构的cosin距离代表相似度。所以为user推荐相似度高的item。
          (1) user维度的网络结构,分别将四个特征embedding,并输入全连接层;再将四个全连接输入到全连接层,并定义激活函数为tanh(代码为paddle开源工具)。

          (2)item维度网络结构,同user维度一样,分别将三个特征embedding后输入全连接层,再相加输入全连接层(注意title用了cnn)。
          (3)最顶层将user和item连接,cosin距离代表了user和item的相似度,并且损失函数为mse。

 
2 youtube推荐模型
     1)大规模推荐的系统由于数据量太大,不能直接进行全连接的排序,所以一般大致分为两个阶段:百万级到百级的触发过滤出一部分,再进行细致排序截断阶段。 
     2)百万级到百级的触发过滤,模型采用MLP,训练时softmax做多分类,预测时计算与所有视频的相似度,取top K个视频。我认为label可以是show:clk,类似于LR进行模型推荐。
     3)排序截断阶段:网络结构与触发阶段一样,只是最顶层是LR,做排序;特征工程方面可以更细致,比如视频ID,上次点击时间等等。
 
 
 
 
 
 
 

DNN个性化推荐模型的更多相关文章

  1. 搜索实时个性化模型——基于FTRL和个性化推荐的搜索排序优化

    本文来自网易云社区 作者:穆学锋 简介:传统的搜索个性化做法是定义个性化的标签,将用户和商品通过个性化标签关联起来,在搜索时进行匹配.传统做法的用户特征基本是离线计算获得,不够实时:个性化标签虽然具有 ...

  2. 为什么要用深度学习来做个性化推荐 CTR 预估

    欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:苏博览 深度学习应该这一两年计算机圈子里最热的一个词了.基于深度学习,工程师们在图像,语音,NLP等领域都取得了令人振奋的进展.而深 ...

  3. CSDDN特约专稿:个性化推荐技术漫谈

    本文引自http://i.cnblogs.com/EditPosts.aspx?opt=1 如果说过去的十年是搜索技术大行其道的十年,那么个性化推荐技术将成为未来十年中最重要的革新之一.目前几乎所有大 ...

  4. 从0开始做垂直O2O个性化推荐-以58到家美甲为例

    从0开始做垂直O2O个性化推荐 上次以58转转为例,介绍了如何从0开始如何做互联网推荐产品(回复"推荐"阅读),58转转的宝贝为闲置物品,品类多种多样,要做统一的宝贝画像比较难,而 ...

  5. TensorFlow实战——个性化推荐

    原创文章,转载请注明出处: http://blog.csdn.net/chengcheng1394/article/details/78820529 请安装TensorFlow1.0,Python3. ...

  6. 闲聊DNN CTR预估模型

    原文:http://www.52cs.org/?p=1046 闲聊DNN CTR预估模型 Written by b manongb 作者:Kintocai, 北京大学硕士, 现就职于腾讯. 伦敦大学张 ...

  7. Machine Learning With Spark学习笔记(在10万电影数据上训练、使用推荐模型)

    我们如今開始训练模型,还输入參数例如以下: rank:ALS中因子的个数.通常来说越大越好,可是对内存占用率有直接影响,通常rank在10到200之间. iterations:迭代次数,每次迭代都会降 ...

  8. Python个人项目--豆瓣图书个性化推荐

    项目名称: 豆瓣图书个性化推荐 需求简述:从给定的豆瓣用户名中,获取该用户所有豆瓣好友列表,从豆瓣好友中找出他们读过的且评分5星的图书,如果同一本书被不同的好友评5星,评分人数越多推荐度越高. 输入: ...

  9. 个性化推荐调优:重写spark推荐api

    最近用spark的mlib模块中的协同过滤库做个性化推荐.spark里面用的是als算法,本质上是矩阵分解svd降维,把一个M*N的用户商品评分矩阵分解为M*K的userFeature(用户特征矩阵) ...

随机推荐

  1. PRINCE2认证

    PRINCE是PRoject IN Controlled Environment(受控环境下的项目管理)的简称. PRINCE2描述了如何以一种逻辑性的.有组织的方法,按照明确的步骤对项目进行管理.它 ...

  2. 初窥DB2之insert语句

    第一种写法 INSERT INTO PERSVALUES (12, 'Harris', 20, 'Sales', 5, 18000, 1000, '1950-1-1') 第二种写法 INSERT IN ...

  3. python学习随笔(三)

    在linux中输入密码,我们是看不到的,如果在python中直接输入是可以看的到的,执行以下程序 #!/usr/bin/env python username = raw_input("us ...

  4. 学习Jammendo代码的心路历程(二)ViewFlipper数据的填充

    打开Jammendo进入到首页之后,会看到这样一个界面.可以看到下左效果,我们可以看到,他是上部分的ViewFlipper模块和下半部分的listview模块构成的,今天就简单的说一下Jammendo ...

  5. sas2ircu工具信息收集及磁盘定位

    最近几台Dell服务器的磁盘损坏,报修厂商之后dell工程师需要手机机器磁盘插槽位置信息,使用的就是sas2ircu工具. 此工具还可以配置RAID信息,但是我这次只需要他的查看信息的功能,下面就开始 ...

  6. sql-update语句多表级联更新

    在数据表更新时,可能会出现一种情况,就是更新的内容是来源于其他表的,这个时候,update语句中就加了from,下面为一个范例: update a set a.name=b.name,a.value= ...

  7. 老李分享:为何要使用 Web Services

    老李分享:为何要使用 Web Services   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.如果对课程感兴趣,请大家咨询q ...

  8. Angularjs 动态添加指令并绑定事件

    先说使用场景,动态生成DOM元素并绑定事件,非常常见的一种场景,用jq实现效果: http://jsbin.com/gajizuyuju/edit?html,js,output var count=0 ...

  9. 我的iOS-App

    1.PocketConfidential(密保箱) 简介 保存账号密码等敏感信息. 应用技术: sqlite.sqlcipher加密.AES数据加密.GCD https://itunes.apple. ...

  10. Yum -userguide

    Introduction Yum(Yellow dog Updater, Modified) is an automatic updater and package installer/remover ...