为了让绝大多数人都可以看懂,所以我就用简单的话语来讲解机器学习每一个算法

第一次写ML的博文,所以可能会有些地方出错,欢迎各位大佬提出意见或错误

祝大家开心进步每一天~

博文代码全部为python

简单的说一下什么是机器学习,机器学习英文名称是Machine Learning, ML

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

机器学习学习形式可分为监督学习,监督学习,半监督学习和强化学习

KNN(k-Nearest Neighbor)中文名为K近邻,是分类算法的一种,KNN的思路为在在数据和标签已知的情况下将测试数据的特征和训练集中的特征进行比较,找到与之最相似的k的数据,那么这个数据对应的类别就是k个数据中出现次数最多的那个类别

寻找相似度有多重方法,最常用的为欧几里得度量皮尔逊相关系数余弦相似度

算法流程大致分为 

  1)计算测试数据与各个训练数据之间的距离;

  2)按照距离的递增关系进行排序;

  3)选取距离最小的K个点;

  4)确定前K个点所在类别的出现频率;

  5)返回前K个点中出现频率最高的类别作为测试数据的预测分类。

 

本文使用iris数据集,可从UCI处下载    传送门

使用py的三种库pandas,numpy,sklearn

查看数据集

前4列为特征,最后一列为标签

 #获取数据
X=np.loadtxt("/Users/galan/py/ML-D/iris.data.txt",delimiter=",",dtype=float,usecols=(0,1,2,3))
y=np.loadtxt("/Users/galan/py/ML-D/iris.data.txt",delimiter=",",dtype=str,usecols=(4,))
#创建训练数据和测试数据
X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=.7)

第2,3行为获取特征和标签

第五行中使用sklearn库的train_test_split函数,用来方便分隔测试集和训练集

本文使用欧几里得度量算法,在下方也会列出皮尔逊相似性和余弦相似度的py代码

欧几里得度量多为计算空间中两点间的距离

表达式为    |x| = √( x[1]2 + x[2]2 + … + x[n]2 )

代码表现形式为  [(p1-q1)**2+(p2-q2)**2+...+(pn-qn)**2]**0.5

def eculidean(p,q):
sumSq=0.0
#讲差值德平方累加起来
for i in range(len(p)):
sumSq+=sum(p[i]-q[i])**2
#求平方根
return (sumSq**0.5)

皮尔逊相关系数是度量两个变量之间相关程度,介于-1和1之间,1代表变量完全正相关,0代表无关,-1代表完全负关系

def pearson(x,y):
n=len(x)
vals=range(n)
#简单求和
sumx=sum([float(x[i]) for i in vals])
sumy=sum([float(y[i]) for i in vals])
#求平方和
sumxSq=sum([x[i]**2.0 for i in vals])
sumySq=sum([y[i]**2.0 for i in vals])
#求乘积之和
pSum=sum([x[i]*y[i] for i in vals])
#计算皮尔逊评价值
num=pSum-(sumx*sumy/n)
den=((sumxSq-pow(sumx,2)/n)*(sumySq-pow(sumy,2)/n))**.5
if den==0:return 1 r=num/den
return r

余弦相似度将向量根据坐标值,绘制到向量空间中求得他们的夹角,并得出夹角对应的余弦值,夹角越小,余弦值越接近于1,它们的方向更加吻合,则越相似。

#vect1,vect2位两个一维向量如(1,1)
def getCost(vect1,vect2):
sum_x=0.0
sum_y=0.0
sum_xy=0.0
for a,b in zip(vect1,vect2):
sum_xy+=a*b
sum_x+=a**2
sum_y+=b**2
if sum_x==0.0 or sum_y==0.0:
return None
else:
return sum_xy/((sum_x*sum_y)**0.5)

knn的求证过程

#K值
k=5
#计算所有的欧氏距离组合成字典
Dists={}
for i in range(len(X_train)):
Dists[eculidean(X_test[0],X_train[i])]=y_train[i]
#排序字典
sortedDist=sorted(Dists.iteritems(),reverse=True,key=lambda x:x[0])[:k]
classCount={}
#寻找最多的类别标签
for i in sortedDist:
if i[1] in classCount:
classCount[i[1]]+=1
else:
classCount[i[1]]=1
print classCount

下面贴出所有的代码

#coding:utf-8
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split #获取数据
X=np.loadtxt("./ML-D/iris.data.txt",delimiter=",",dtype=float,usecols=(0,1,2,3))
y=np.loadtxt("./ML-D/iris.data.txt",delimiter=",",dtype=str,usecols=(4,))
#创建训练数据和测试数据
X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=.7) def eculidean(p,q):
sumSq=0.0
#讲差值德平方累加起来
for i in range(len(p)):
sumSq+=sum(p-q[i])**2
#求平方根
return (sumSq**0.5) def classify(X_train,X_test,k):
#计算所有的欧氏距离
Dists={}
for i in range(len(X_train)):
Dists[eculidean(X_test,X_train[i])]=y_train[i]
#排序字典
sortedDist=sorted(Dists.iteritems(),reverse=True,key=lambda x:x[0])[:k]
classCount={}
#寻找最多的类别标签
for i in sortedDist:
if i[1] in classCount:
classCount[i[1]]+=1
else:
classCount[i[1]]=1
return sorted(classCount.iteritems(),key=lambda x:x[1],reverse=True) if __name__ == '__main__':
print "%s的类别为%s"%(X_test[15],classify(X_train,X_test[0],5)[0][0])

我会每周更新一篇ML博文,方便大家学习,^_^ 共同学习共同提高,欢迎大家前来对我的文章提出宝贵意见

祝大家周末愉快~

机器学习小记——KNN(K近邻) ^_^ (一)的更多相关文章

  1. web安全之机器学习入门——3.1 KNN/k近邻

    目录 sklearn.neighbors.NearestNeighbors 参数/方法 基础用法 用于监督学习 检测异常操作(一) 检测异常操作(二) 检测rootkit 检测webshell skl ...

  2. 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)

    No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...

  3. 机器学习实战python3 K近邻(KNN)算法实现

    台大机器技法跟基石都看完了,但是没有编程一直,现在打算结合周志华的<机器学习>,撸一遍机器学习实战, 原书是python2 的,但是本人感觉python3更好用一些,所以打算用python ...

  4. 基本分类方法——KNN(K近邻)算法

    在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...

  5. 机器学习03:K近邻算法

    本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...

  6. 机器学习 Python实践-K近邻算法

    机器学习K近邻算法的实现主要是参考<机器学习实战>这本书. 一.K近邻(KNN)算法 K最近邻(k-Nearest Neighbour,KNN)分类算法,理解的思路是:如果一个样本在特征空 ...

  7. 02机器学习实战之K近邻算法

    第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...

  8. 机器学习算法之K近邻算法

    0x00 概述   K近邻算法是机器学习中非常重要的分类算法.可利用K近邻基于不同的特征提取方式来检测异常操作,比如使用K近邻检测Rootkit,使用K近邻检测webshell等. 0x01 原理   ...

  9. KNN K~近邻算法笔记

    K~近邻算法是最简单的机器学习算法.工作原理就是:将新数据的每一个特征与样本集中数据相应的特征进行比較.然后算法提取样本集中特征最相似的数据的分类标签.一般来说.仅仅提取样本数据集中前K个最相似的数据 ...

随机推荐

  1. Android之通过网络播放一首简单的音乐

    首先,附上程序执行后的效果.例如以下图所看到的: 一.部署一个web项目到tomcatserver上: 1.这个小程序是结合网络来播放一首音乐的,首先,把我们搞好的一个web项目放置在tomcat安装 ...

  2. java使用线程请求訪问每次间隔10分钟连续5次,之后停止请求

    java使用线程请求訪问每次间隔10分钟连续5次,收到对应的时候停止请求 package com.qlwb.business.util; /** * * * @类编号: * @类名称:RequestT ...

  3. iOS_4_表情排列

    终于效果图: BeyondViewController.h // // BeyondViewController.h // 04_表情排列 // // Created by beyond on 14- ...

  4. Ubuntu Linux訪问小米手机存储卡

    操作系统: 麒麟14.04 安装工具 sudo apt-get install mtpfs libfuse-dev libmad0-dev sudo mkdir /media/mtp 重新启动与使用 ...

  5. 本地代码上传到GitHub---拷贝github代码

    来这里: 转载请标明出处: http://blog.csdn.net/hanhailong726188/article/details/46738929 步骤: git init git add na ...

  6. 【功能代码】---5 JS通过事件隐藏显示元素

    JS通过事件隐藏显示元素 在开发中,很多时候我们需要点击事件,才显示隐藏元素.那如何做到页面刚开始就把标签隐藏. 有两种方法: (1) display:none    <div id=" ...

  7. 添加组groupadd,修改组groupmod,删除组groupdel,将用户加入删除组gpasswd

    groupadd -g GID :指定组id groupmod -g GID :修改组id -n 新组名 :修改组名 groupmod -n newname oldname groupdel grou ...

  8. TCP/IP----基本知识

    就以这篇文章为起点,开始自己的学习计算机网络之路.这些仅是我个人之言,如有差错,希望读者能够逐一指出,在下不胜感激. 首先,我们需要知道一些关于网络的基本知识. 网络中的关系大多为拓扑结构.那么,何为 ...

  9. Layui常见问题

    为什么表单不显示?当你使用表单时,Layui会对select.checkbox.radio等原始元素隐藏,从而进行美化修饰处理.但这需要依赖于form组件,所以你必须加载 form,并且执行一个实例. ...

  10. Spring(概念)

    在本文中只讲述一些概念性的东西,因为我在开始学习JAVA的时候对这些概念性的东西总是不太理解,总结总结再感悟一下,也方便后人. 理解的不深,用通俗的语言讲一下: 百度百科这样介绍: spring框架主 ...