多维数组下标

多维数组的下标是用元组来实现每一个维度的,如果元组的长度比维度大则会出错,如果小,则默认元组后面补 : 表示全部访问;

如果一个下标不是元组,则先转换为元组,在转换过程中,列表和数组的转换有所不同。

一个列表会被转换成各个元素组成的元组,然后进行访问(此时如果不全为整数的话,则不会共享存储区域,因为无法通过改变步长来保持存储结构不变);如:lidx=[[0],[1],[2]];如果用lidx来访问一个数组,则会被转换成:([0],[1],[2]),即访问(0,1,2)上的元素;

一个数组会进行补 : 操作转成长度一致的元组,如三维数组a:

array([[[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]],

[[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29],
[30, 31, 32, 33, 34],
[35, 36, 37, 38, 39]],

[[40, 41, 42, 43, 44],
[45, 46, 47, 48, 49],
[50, 51, 52, 53, 54],
[55, 56, 57, 58, 59]]])

如果使用一个数组来访问:aidx=np.array([[0],[1],[2]]):

array([[0],
[1],
[2]])

则会被补全为:(aidx,:,:),访问结果为:

array([[[[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]]],

[[[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29],
[30, 31, 32, 33, 34],
[35, 36, 37, 38, 39]]],

[[[40, 41, 42, 43, 44],
[45, 46, 47, 48, 49],
[50, 51, 52, 53, 54],
[55, 56, 57, 58, 59]]]])

结果的形状是访问下标数组的形状和原数组形状的组合:原数组形状为(3,4,5),下标数组形状为:(3,1);访问得到的数组形状为:(3,1,4,5);访问数组在0轴位置替代原数组形状;

相当于a(aidx,:,:),如果访问:a(:,aidx,:),则访问的形状应该为(3,3,1,5),即在1轴位置替代原数组形状;

广播

再复习一下广播,详细规则见随笔:http://www.cnblogs.com/lyon2014/p/4696989.html

如上例的a数组,a.shape = (3,4,5),如果使用数组来访问,则会在对应的位置替代原数组的形状,如果下标中有多个数组,且形状不一致,则会进行广播,如:

i0 = np.array([[1,2,1],[0,1,0]])  , i0.shape=(2,3)

i1 = np.array([[[0]],[[1]]]), i1.shape=(2,1,1)

i2 = np.array([[[2,3,2]]]), i2.shape=(1,1,3)

按照广播的规则,i0的维数比最大维数3少,进行补1操作得到新的形状为:(1,2,3),再比较各个轴的长度:

1 2 3
2 1 1
1 1 3 
--------
2 2 3

最后结果的形状为(2,2,3),且满足第三条规则,可以进行计算;广播后的三个数组(记为:ind0,ind1,ind2)为:

ind0:

array([[[1, 2, 1],
[0, 1, 0]],

[[1, 2, 1],
[0, 1, 0]]])

ind1:

array([[[0, 0, 0],
[0, 0, 0]],

[[1, 1, 1],
[1, 1, 1]]])

ind2:

array([[[2, 3, 2],
[2, 3, 2]],

[[2, 3, 2],
[2, 3, 2]]])

此时,使用广播后的三个数组访问数组a(i0,i1,i2),得到的数组形状应该只与下标数组有关,即广播后的数组形状:(2,2,3);

如果a使用其中的两个数组访问:a(:,i0,i1),由于i0和i1广播后的形状为 (2,2,3),在1、2轴替换a数组的形状,最后得到的形状为:(3,2,2,3);

如果a使用其中两个数组访问,并且两个数组不连续:a(i0,:,i1),则第二轴会作为最后一维,即形状应该为广播后形状加上切片轴的形状:(2,2,3,4)

布尔数组作为下标

布尔数组作为下标时,相当于用nonzero()处理后的元组作为下标;

如:b2 = np.array([[True,False,True],[True,False,False]]) 作为下标,相当于:

np.nonzero(b2) = (array([0, 0, 1]), array([0, 2, 0]))

a[b2] = a[np.nonzero(b2)] = a[ array([0, 0, 1]), array([0, 2, 0]), : ], 前两轴由于作为元组访问,最后得到的形状为(3,),最后访问到的形状为:(3,5)

python科学计算_numpy_广播与下标的更多相关文章

  1. python科学计算_numpy_函数库

    1.常规函数与排序 常用统计函数: 求和:sum().均值:mean().标准差:std().方差:var().最小值:min().最大值:max().最大值与最小值之差:ptp().最大值的下标:a ...

  2. python科学计算_numpy_线性代数/掩码数组/内存映射数组

    1. 线性代数 numpy对于多维数组的运算在默认情况下并不使用矩阵运算,进行矩阵运算可以通过matrix对象或者矩阵函数来进行: matrix对象由matrix类创建,其四则运算都默认采用矩阵运算, ...

  3. Python科学计算库

    Python科学计算库 一.numpy库和matplotlib库的学习 (1)numpy库介绍:科学计算包,支持N维数组运算.处理大型矩阵.成熟的广播函数库.矢量运算.线性代数.傅里叶变换.随机数生成 ...

  4. Python科学计算基础包-Numpy

    一.Numpy概念 Numpy(Numerical Python的简称)是Python科学计算的基础包.它提供了以下功能: 快速高效的多维数组对象ndarray. 用于对数组执行元素级计算以及直接对数 ...

  5. Python科学计算库Numpy

    Python科学计算库Numpy NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库. 1.简 ...

  6. windows下安装python科学计算环境,numpy scipy scikit ,matplotlib等

    安装matplotlib: pip install matplotlib 背景: 目的:要用Python下的DBSCAN聚类算法. scikit-learn 是一个基于SciPy和Numpy的开源机器 ...

  7. Python科学计算(二)windows下开发环境搭建(当用pip安装出现Unable to find vcvarsall.bat)

    用于科学计算Python语言真的是amazing! 方法一:直接安装集成好的软件 刚开始使用numpy.scipy这些模块的时候,图个方便直接使用了一个叫做Enthought的软件.Enthought ...

  8. 目前比较流行的Python科学计算发行版

    经常有身边的学友问到用什么Python发行版比较好? 其实目前比较流行的Python科学计算发行版,主要有这么几个: Python(x,y) GUI基于PyQt,曾经是功能最全也是最强大的,而且是Wi ...

  9. Python科学计算之Pandas

    Reference: http://mp.weixin.qq.com/s?src=3&timestamp=1474979163&ver=1&signature=wnZn1UtW ...

随机推荐

  1. php+jQuery+Mysql找回密码----ThinkPHP

    最近用ThinkPHP做了一个邮箱找回密码功能,在遭遇了N个bug之后终于做成了,下面分享一下邮箱找回密码功能的实现: 邮箱找回密码实际上就是在用户通过验证之后重置密码的过程,一般开发者会在验证用户信 ...

  2. oracle 数据库中的序列

    序列是什么,通俗点说,序列就是按照一定顺序进行排列,序列会自动给你递增,生成唯一的序列号: oracle数据库不同于sqlServer数据库,oracle数据库中是没有自增长列,使用的是sequenc ...

  3. C# RichTextBox设置行间距

    之前从CSDN上下载了一个代码,参看之后,改了一些内容,感觉设置行间距更具体,不会因为字号的变化而受到影响,具体代码参看: CSDN:http://download.csdn.net/detail/n ...

  4. 《31天成为IT服务达人》最新文件夹

    在网上发帖后.得到广大博友的关心与帮助,提了不少好的建议和意见,本人把书稿再次做了修改,现把章节发给大家,欢迎拍砖!呵呵. 机遇篇   第一章奇葩的IT男 1.1     半年月薪过万 1.2     ...

  5. 从头认识Spring-2.7 自己主动检測Bean(2)-过滤器<context:include-filter/>

    这一章节我们来讨论一下过滤器<context:include-filter/>的使用. 1.domain Person接口: package com.raylee.my_new_sprin ...

  6. Deming管理系列(2)——怎样开发度量能力

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdTAxMTI1MDQ1NQ==/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...

  7. android之获取屏幕的宽度和高度

    获取屏幕的宽度和高度: 方法一: //获取屏幕的宽度 public static int getScreenWidth(Context context) { WindowManager manager ...

  8. 一、Spring Cloud介绍

    springcloud 介绍 研究了一段时间spring boot了准备向spirng cloud进发,公司架构和项目也全面拥抱了Spring Cloud.在使用了一段时间后发现Spring Clou ...

  9. TableML-GUI篇(Excel编译/解析工具)

    项目情况 本文接上篇TableML Excel编译/解析工具,本文主要介绍GUI工具的使用,及配置项,如果你想了解此工具更加详细的说明,请阅读上篇文章. 项目地址:https://github.com ...

  10. Selenium Python 安装指导

    最近无聊.又重新装了个selenium 果然时代变了.安装的时候的方法和以前不太一样了.因此觉得有必要单列出来加以说明 另外备注:测试小伙伴们.安装此类工具报错.尝试以下两个方案之一: 1.请转sta ...