Thrift是如何实现序死化与反序列化的,在IDL文件中,更改IDL文件中的变量序号或者[使用默认序号的情况下,新增变量时,将新增的变量不放在IDL文件的结尾,均会导致Thrift文件的反序列后无法做到向后兼容],我们只有理解Thrift是如何实现序列化的,才能了解这种现象产生的原因,才能把代码写的更让人放心

关于Thrift域的版本号的定义可以在http://thrift.apache.org/static/files/thrift-20070401.pdf这篇文章中找到说定义

Versioning in Thrift is implemented via field identifiers.
The field header for every member of a struct in Thrift is
encoded with a unique field identifier. The combination of
this field identifier and its type specifier is used to
uniquely identify the field. The Thrift definition language
supports automatic assignment of field identifiers,
but it is good programming practice to always explicitly
specify field identifiers.

翻译过来,大概意思就是Thrift中每个域都有一个版本号,这个版本号是由属性的数字序号 + 属性的类型来确定的

一个简单的Thrift文件

struct Test {
1 : required i32 key;
2 : required string value;
}

执行

thrift -gen java Test.thrift

将thrift文件转换成java源文件,在此不列出详细的源文件内容,只列出与序列化与反序列化相关的代码

序列化,实际上就是write,如下所示

//http://www.aiprograming.com/b/pengpeng/24
public void write(org.apache.thrift.protocol.TProtocol oprot, Test struct) throws org.apache.thrift.TException {
struct.validate(); oprot.writeStructBegin(STRUCT_DESC);
oprot.writeFieldBegin(KEY_FIELD_DESC);
oprot.writeI32(struct.key);
oprot.writeFieldEnd();
if (struct.value != null) {
oprot.writeFieldBegin(VALUE_FIELD_DESC);
oprot.writeString(struct.value);
oprot.writeFieldEnd();
}
oprot.writeFieldStop();
oprot.writeStructEnd();
}

struct.validate()主要用来校验thrift文件中定义的required域即必传的值是不是有值,没有值就会抛出TProtocolException异常

public void validate() throws org.apache.thrift.TException {
// check for required fields
// alas, we cannot check 'key' because it's a primitive and you chose the non-beans generator.
if (value == null) {
throw new org.apache.thrift.protocol.TProtocolException("Required field 'value' was not present! Struct: " + toString());
}
}

oprot.writeStructBegin(STRUCT_DESC);STRUCT_DESC = new org.apache.thrift.protocol.TStruct("Test");即开始写结构体的标识,在这里我们以TBinaryProtocol二进制 的传输作为例子,TBinaryProtocol中writeStructBegin的实现如下

public void writeStructBegin(TStruct struct) {
}

即什么都没有做,接下来oprot.writeFieldBegin(KEY_FIELD_DESC);中

KEY_FIELD_DESC = new org.apache.thrift.protocol.TField("key", org.apache.thrift.protocol.TType.I32, (short)1);

TBinaryProtocol中对应的实现如下

public void writeFieldBegin(TField field) throws TException {
this.writeByte(field.type);
this.writeI16(field.id);
}

从上面的代码中可以看出序列化的过程中写入的是域的类型以及域的数字序号,从org.apache.thrift.protocol.TType中,我们也可以知道在thrift IDL支持的数据类型,如下所示

public final class TType {
public static final byte STOP = 0;
public static final byte VOID = 1;
public static final byte BOOL = 2;
public static final byte BYTE = 3;
public static final byte DOUBLE = 4;
public static final byte I16 = 6;
public static final byte I32 = 8;
public static final byte I64 = 10;
public static final byte STRING = 11;
public static final byte STRUCT = 12;
public static final byte MAP = 13;
public static final byte SET = 14;
public static final byte LIST = 15;
public static final byte ENUM = 16; public TType() {
}

其中STOP用于序列化完所有的域后,写入序死化文件,表示所有的域都序列化完成,接下来是oprot.writeI32(struct.key);这条语句就是写入要序列化的int类型值,对应TBinaryProtocol的实现如下所示:

public void writeI32(int i32) throws TException {
this.i32out[0] = (byte)(255 & i32 >> 24);
this.i32out[1] = (byte)(255 & i32 >> 16);
this.i32out[2] = (byte)(255 & i32 >> 8);
this.i32out[3] = (byte)(255 & i32);
this.trans_.write(this.i32out, 0, 4);
}

大致意思就是将int转换为byte数组,写入下层的channel中,接下来就是oprot.writeFieldEnd();对应TBinaryProtocol的实现如下所示:

public void writeFieldEnd() {
}

接下来的这段代应就是序列化Test.thrift中定义的value,和上面的序列化过程基本类似,但是也有区别,在序列化string类型时,会先在序死化文件里写入字符串的长度,然后再写入字符串的值

if (struct.value != null) {
oprot.writeFieldBegin(VALUE_FIELD_DESC);
oprot.writeString(struct.value);
oprot.writeFieldEnd();
}

最后,会向序列化的文件里面写入一个字节的0表示序列化结束,如下所示

public void writeFieldStop() throws TException {
this.writeByte((byte)0);
}

从上面的序列化过程中,我们可以知道序列化后的文件里面只有域的类型以及域的数字序号,没有域的名称,因此与JSON/XML这种序列化工具相比,thrift序列化后生成的文件体积要小很多

有了序列化的生成过程,再来看看thrift是如何反序列化,就非常简单了,反序列化的代码如下所示

public void read(org.apache.thrift.protocol.TProtocol iprot, Test struct) throws org.apache.thrift.TException {
org.apache.thrift.protocol.TField schemeField;
iprot.readStructBegin();
while (true)
{
schemeField = iprot.readFieldBegin();
if (schemeField.type == org.apache.thrift.protocol.TType.STOP) {
break;
}
switch (schemeField.id) {
case 1: // KEY
if (schemeField.type == org.apache.thrift.protocol.TType.I32) {
struct.key = iprot.readI32();
struct.setKeyIsSet(true);
} else {
org.apache.thrift.protocol.TProtocolUtil.skip(iprot, schemeField.type);
}
break;
case 2: // VALUE
if (schemeField.type == org.apache.thrift.protocol.TType.STRING) {
struct.value = iprot.readString();
struct.setValueIsSet(true);
} else {
org.apache.thrift.protocol.TProtocolUtil.skip(iprot, schemeField.type);
}
break;
default:
org.apache.thrift.protocol.TProtocolUtil.skip(iprot, schemeField.type);
}
iprot.readFieldEnd();
}
iprot.readStructEnd(); // check for required fields of primitive type, which can't be checked in the validate method
if (!struct.isSetKey()) {
throw new org.apache.thrift.protocol.TProtocolException("Required field 'key' was not found in serialized data! Struct: " + toString());
}
struct.validate();
}

反序列化最为核心的代码在while循环这里,schemeField是由域的类型type及域的数字序号id构成的一个类,如下所示

public class TField {
public final String name;
public final byte type;
public final short id; public TField() {
this("", (byte)0, (short)0);
} public TField(String n, byte t, short i) {
this.name = n;
this.type = t;
this.id = i;
} public String toString() {
return "<TField name:\'" + this.name + "\' type:" + this.type + " field-id:" + this.id + ">";
} public boolean equals(TField otherField) {
return this.type == otherField.type && this.id == otherField.id;
}
}

iprot.readFieldBegin();就是从序列化文件中构造一个TField类型的对象,TBinaryProtocol的实现如下所示,从下面的源代码可以看出,首先读取域的类型,然后读取域的数字序号

public TField readFieldBegin() throws TException {
byte type = this.readByte();
short id = type == 0?0:this.readI16();
return new TField("", type, id);
}

构造完了TFiled对象之后,我们需要读取域的值,看switch语句,也很容易理解,要读取域的值,需要两个前提

1.域的数字序号相同

2.域的类型相同

在满足上面的两个要求的前提下,再根据域的类型,调用相应的读取方法,如果域的数字序号相同,但是域的类型不同,则会跳过给该域赋值,执行的代码逻辑是

org.apache.thrift.protocol.TProtocolUtil.skip(iprot, schemeField.type);

最后,反序列化完成后,还要需检查一下必传的值是否已经传了,调用下面这段代码

struct.validate();

由反序列化的过程,可以知道,Thrift的反序列化,没有用到java的反射技术,也没有开设过多的内存空间,因此同JSON/XML相比,反序列化更快,更省内存,从反序列化的过程中,我们可以看到

Thrift的向后兼容性,需要满足一定的条件

1.域的数字序号不能改变

2.域的类型不能改变

满足了上面的两点,无论你增加还是删除域,都可以实现向后兼容,勿需担心   

Thrift序列化与反序列化的实现机制分析的更多相关文章

  1. Thrift序列化与反序列化

    Thrift序列化与反序列化的实现机制分析 Thrift是如何实现序死化与反序列化的,在IDL文件中,更改IDL文件中的变量序号或者[使用默认序号的情况下,新增变量时,将新增的变量不放在IDL文件的结 ...

  2. .Net中的序列化和反序列化详解

    序列化通俗地讲就是将一个对象转换成一个字节流的过程,这样就可以轻松保存在磁盘文件或数据库中.反序列化是序列化的逆过程,就是将一个字节流转换回原来的对象的过程. 然而为什么需要序列化和反序列化这样的机制 ...

  3. Java 序列化和反序列化(三)Serializable 源码分析 - 2

    目录 Java 序列化和反序列化(三)Serializable 源码分析 - 2 1. ObjectStreamField 1.1 数据结构 1.2 构造函数 2. ObjectStreamClass ...

  4. Java 序列化和反序列化(二)Serializable 源码分析 - 1

    目录 Java 序列化和反序列化(二)Serializable 源码分析 - 1 1. Java 序列化接口 2. ObjectOutputStream 源码分析 2.1 ObjectOutputSt ...

  5. 序列化与反序列化、def的介绍与快速使用、cbv源码分析、APIView与request对象分析

    今日内容概要 序列化与反序列化 def介绍和快速使用 cbv源码流程分析 drf之APIView和Request对象分析 内容详细 1.序列化和反序列化 # api接口开发 最核心最常见的一个过程就是 ...

  6. 【Java基础】序列化与反序列化深入分析

    一.前言 复习Java基础知识点的序列化与反序列化过程,整理了如下学习笔记. 二.为什么需要序列化与反序列化 程序运行时,只要需要,对象可以一直存在,并且我们可以随时访问对象的一些状态信息,如果程序终 ...

  7. Java反序列化漏洞通用利用分析

    原文:http://blog.chaitin.com/2015-11-11_java_unserialize_rce/ 博主也是JAVA的,也研究安全,所以认为这个漏洞非常严重.长亭科技分析的非常细致 ...

  8. C#: .net序列化及反序列化 [XmlElement(“节点名称”)]

    .net序列化及反序列化 序列化是指一个对象的实例可以被保存,保存成一个二进制串,当然,一旦被保存成二进制串,那么也可以保存成文本串了.比如,一个计数器,数值为2,我们可以用字符串“2”表示.如果有个 ...

  9. 序列化、反序列化和transient关键字的作用

    引言 将 Java 对象序列化为二进制文件的 Java 序列化技术是 Java 系列技术中一个较为重要的技术点,在大部分情况下,开发人员只需要了解被序列化的类需要实现 Serializable 接口, ...

随机推荐

  1. lufylegend库 鼠标事件 循环事件 键盘事件

    lufylegend库 鼠标事件 循环事件 键盘事件 <!DOCTYPE html> <html lang="en"> <head> <m ...

  2. window下redis的安装

    1.使用phpinfo()函数查看PHP的版本信息,这会决定扩展文件版本2.根据PHP版本号,编译器版本号和CPU架构,选择php_redis-2.2.5-5.5-ts-vc11-x86.zip和ph ...

  3. RabbitMQ安装和使用(和Spring集成)

    一.安装Rabbit MQ Rabbit MQ 是建立在强大的Erlang OTP平台上,因此安装Rabbit MQ的前提是安装Erlang.通过下面两个连接下载安装3.2.3 版本: 下载并安装 E ...

  4. Ubuntu 修改时区

    1. 使用命令行 sudo tzselect 根据提示完成修改 2.修改~/.profile文件 添加: TZ='Asia/Shanghai'; export TZ 注销后重新登陆生效

  5. WebForm 内置对象、数据增删改、状态保持

    一.内置对象 1.Response对象:响应请求 Response.Write("<script>alert('添加成功!')</script>"); → ...

  6. ECMAScript 6 笔记(五)

    Iterator和for...of循环 1. Iterator(遍历器)的概念 Iterator接口的目的,就是为所有数据结构,提供了一种统一的访问机制,即for...of循环 遍历器(Iterato ...

  7. 解析.NET对象的跨应用程序域访问(下篇)

    转眼就到了元宵节,匆匆忙忙的脚步是我们在为生活奋斗的写照,新的一年,我们应该努力让自己有不一样的生活和追求.生命不息,奋斗不止.在上篇博文中主要介绍了.NET的AppDomain的相关信息,在本篇博文 ...

  8. Java内部类之匿名内部类

      我们都知道Java中可以使用内部类,将一个类的定义放在另一个类的定义的内部,这就是内部类,但是匿名内部类往往使我们摸不着头脑,因为它并没有特定的名称,那么该如何使用它呢? 定义一个匿名内部类 pu ...

  9. Ninject之旅目录

    第一章:理解依赖注入 Ninject之旅之一:理解DI 第二章:开始使用Ninject Ninject之旅之二:开始使用Ninject(附程序下载) Ninject之旅之三:Ninject对象生命周期 ...

  10. Jenkins在windows上的安装配置

     今天是2月14号,所谓西方情人节,下班回来发现,2月14过的比七夕还火热.于是上网百度百科查询了"情人节". 毕竟是中国的百度啊.是这么解释的.我感到很欣慰.过得每一个节日都应该 ...