Description

某加工厂有A、B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成。由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工,所完成任务又会不同。某一天,加工厂接到n个产品加工的任务,每个任务的工作量不尽一样。你的任务就是:已知每个任务在A机器上加工所需的时间t1, B机器上加工所需的时间t2及由两台机器共同加工所需的时间t3,请你合理安排任务的调度顺序,使完成所有n个任务的总时间最少。

Input

输入共n+1行第1行为 n。 n是任务总数(1≤n≤6000)第i+1行为3个[0,5]之间的非负整数t1,t2,t3,分别表示第i个任务在A机器上加工、B机器上加工、两台机器共同加工所需要的时间。如果所给的时间t1或t2为0表示任务不能在该台机器上加工,如果t3为0表示任务不能同时由两台机器加工。

Output

最少完成时间

Sample Input

5
2 1 0
0 5 0
2 4 1
0 0 3
2 1 1

Sample Output

9

题解

我们令$f[i]$表示$A$机器耗时为$i$,$B$机器最少的耗时。

显然我们可以边输入边处理。

输入时我们先将每个非$INF$值加上$t_2$,

对于枚举的

$$f[i]=Min(f[i],f[i-t_1],f[i-t_3]+t_3)$$

这样最后统计答案时

$$ans=Min(ans,Max(i,f[i]))$$

 #include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<cstdio>
#include<string>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=;
const int INF=1e9; int Min(const int &a,const int &b) {return a<b ? a:b;}
int Max(const int &a,const int &b) {return a>b ? a:b;}
int n,m,ans;
int t1,t2,t3;
int f[N*+]; int main()
{
scanf("%d",&n);
memset(f,,sizeof(f));
f[]=;
while (n--)
{
scanf("%d%d%d",&t1,&t2,&t3);
t1=!t1 ? INF :t1;
t2=!t2 ? INF :t2;
t3=!t3 ? INF :t3;
m+=Min(t1,Min(t2,t3));
for (int i=m;i>=;i--)
{
if (f[i]<INF) f[i]+=t2;
if (i>=t1) f[i]=Min(f[i],f[i-t1]);
if (i>=t3) f[i]=Min(f[i],f[i-t3]+t3);
}
}
ans=INF;
for (int i=;i<=m;i++) ans=Min(ans,Max(i,f[i]));
printf("%d\n",ans);
return ;
}

[HNOI 2001]产品加工的更多相关文章

  1. 动态规划(奇异状态):HNOI 2001 产品加工

     产品加工 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加 ...

  2. BZOJ1222[HNOI 2001]产品加工

    题面描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...

  3. [HNOI 2001]软件开发

    Description 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员 ...

  4. [HNOI 2001]求正整数

    Description 对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m.例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6:而且是最小的有4个因子的整数. Input n ...

  5. [HNOI 2001]矩阵乘积

    Description Input Output Sample Input 1 2 3 4 2 3 1 1 3 1 4 5 2 2 1 3 1 2 1 2 2 2 1 1 3 1 2 3 2 4 1 ...

  6. 北大poj-1091

    跳蚤 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9591   Accepted: 2892 Description Z ...

  7. poj 1091 跳蚤

    跳蚤 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8482   Accepted: 2514 Description Z城 ...

  8. BZOJ 2001: [Hnoi2010]City 城市建设

    2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1132  Solved: 555[Submit][ ...

  9. 使用yum安装应用程序时候,报错:[Errno 14] PYCURL ERROR 7 - "Failed to connect to 2001:da8:8000:6023::230: 网络不可达"

    使用yum安装应用程序时候,报错:[Errno 14] PYCURL ERROR 7 - "Failed to connect to 2001:da8:8000:6023::230: 网络不 ...

随机推荐

  1. gem devise配置

    Step1: Gemfile中加入gem 'devise' Step3: rails g devise:install 这一步执行完后命令行会提醒要手动进行如下动作: ================ ...

  2. mysql基础篇 - SELECT 语句详解

    基础篇 - SELECT 语句详解         SELECT语句详解 一.实验简介 SQL 中最常用的 SELECT 语句,用来在表中选取数据,本节实验中将通过一系列的动手操作详细学习 SELEC ...

  3. codevs 1291 火车线路

    http://codevs.cn/problem/1291/ 题目描述 Description 某列火车行使在C个城市之间(出发的城市编号为1,结束达到的城市的编号为C),假设该列火车有S个座位,现在 ...

  4. DELL EqualLogic PS存储硬盘故障数据恢复成功案例分享

    DELL EqualLogic PS4000采用虚拟ISCSI SAN阵列,为远程或分支办公室.部门和中小企业存储部署带来企业级功能.智能化.自动化和可靠性.以简化的管理.快速的部署及合理的价格满足了 ...

  5. day-5 python协程与I/O编程深入浅出

    基于python编程语言环境,重新学习了一遍操作系统IO编程基本知识,同时也学习了什么是协程,通过实际编程,了解进程+协程的优势. 一.python协程编程实现 1.  什么是协程(以下内容来自维基百 ...

  6. DBA 小记 — 分库分表、主从、读写分离

    前言 我在上篇博客 "Spring Boot 的实践与思考" 中比对不同规范的 ORM 框架应用场景的时候提到过主从与读写分离,本篇随笔将针对此和分库分表进行更深入地探讨. 1. ...

  7. .Net Core SignalR 实时推送信息

    以前一直没用成功过SignalR(.net asp),最近几天又参考了对应的文档,最终调成功啦. 开始之前,应该注意: 一定要.Net Core 2.1.0以上的SDK. VS2017 15.6以上的 ...

  8. UML开发工具Rose ralation的破解安装,

    UML开发工具Rose ralation的在windows764破解安装, 安装下载还可以参考:http://www.cnblogs.com/leaven/p/3718361.html 跟大家分享怎么 ...

  9. 电梯模拟C++

    1.问题描述与要求 模拟某校九层教学楼的电梯系统.该楼有一个自动电梯,能在每层停留,其中第一层是大楼的进出层,即是电梯的"本垒层",电梯"空闲"时,将来到该层候 ...

  10. 新概念英语(1-115)Knock! Knock!

    Lesson 115 Knock, knock! 敲敲门! Listen to the tape then answer this question. What does Jim have to dr ...