[HAOI 2007]上升序列
Description
对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax
2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给
出S序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先
x1最小,如果不唯一,再看x2最小……),如果不存在长度为Li的上升序列,则打印Impossible.
Input
第一行一个N,表示序列一共有N个元素第二行N个数,为a1,a2,…,an 第三行一个M,表示询问次数。下面接M
行每行一个数L,表示要询问长度为L的上升序列。N<=10000,M<=1000
Output
对于每个询问,如果对应的序列存在,则输出,否则打印Impossible.
Sample Input
3 4 1 2 3 6
3
6
4
5
Sample Output
1 2 3 6
Impossible
题解
比较暴力...
首先做一般的 $lis$ 都可以获得一个数组,如 $f_i$ 表示 $i$ 这个位置以前以 $a_i$ 结尾的最长上升子序列的长度。
我们考虑反着做,记 $f_i$ 表示 $i$ 这个位置之后以 $a_i$ 开头的最长上升子序列的长度。
然后处理询问 $len$ 的时候只需要从 $1$ 到 $n$ 扫一遍,记 $last$ 为上一个选出的数, $x$ 为待选序列长度。如果 $a_i > last$ 且 $f_i \geq x$ ,便选上,将 $x-1$ 。
//It is made by Awson on 2018.1.4
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define LD long double
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int N = ;
const int INF = ~0u>>; int n, m, a[N+], f[N+], w[N+], x, maxlen; void print(int x) {
int last = ;
for (int i = ; i <= n; i++) {
if (f[i] >= x && last < a[i] && x) {
if (last != ) printf(" ");
last = a[i];
printf("%d", a[i]);
x--;
}
}
printf("\n");
}
int dev(int l, int r, int val) {
int ans = ;
while (l <= r) {
int mid = (l+r)>>;
if (w[mid] > val) l = mid+, ans = mid;
else r = mid-;
}
return ans;
}
void work() {
scanf("%d", &n); w[] = INF;
for (int i = ; i <= n; i++) scanf("%d", &a[i]);
for (int i = n; i >= ; i--) {
int pos = dev(, maxlen, a[i]); maxlen = Max(maxlen, pos+);
f[i] = pos+;
if (f[i] == maxlen) w[maxlen] = a[i];
else w[f[i]] = Max(w[f[i]], a[i]);
}
scanf("%d", &m);
while (m--) {
scanf("%d", &x);
if (x > maxlen) printf("Impossible\n");
else print(x);
}
}
int main() {
work();
return ;
}
[HAOI 2007]上升序列的更多相关文章
- 【HAOI 2007】 上升序列
[题目链接] 点击打开链接 [算法] 先预处理 : 将序列反转,求最长下降子序列 对于每个询问,根据字典序性质,贪心即可 [代码] #include<bits/stdc++.h> usin ...
- [BZOJ 1053] [HAOI 2007] 反素数ant
题目链接:BZOJ 1053 想一想就会发现,题目让求的 1 到 n 中最大的反素数,其实就是 1 到 n 中因数个数最多的数.(当有多于一个的数的因数个数都为最大值时,取最小的一个) 考虑:对于一个 ...
- [HAOI 2007]反素数ant
Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...
- [HAOI 2007]理想的正方形
Description 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. Input 第一行为3个整数,分别表示a,b,n的值第二行至第 ...
- 【HAOI 2007】 理想的正方形
[题目链接] 点击打开链接 [算法] 单调队列 [代码] #include<bits/stdc++.h> using namespace std; #define MAXN 1010 co ...
- bzoj 1053 [ HAOI 2007 ] 反素数ant ——暴搜
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1053 试图打表找规律,但无果... 看TJ了,暴搜: 注意参数 w 是 long long. ...
- [HNOI 2001]求正整数
Description 对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m.例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6:而且是最小的有4个因子的整数. Input n ...
- [HNOI2001]求正整数
题目描述 对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. 例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6:而且是最小的有4个因子的整数. 输入输出格式 输入格式: ...
- 【二分 贪心】覆盖问题 BZOJ1052 HAOI2007
覆盖问题 bzoj1052 题目来源:HAOI 2007 题目描述 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的 ...
随机推荐
- apache学习教程
5.apache教程 httpd.conf文件分析 ServerRoot "E:/phpwebenv/PHPTutorial/Apache" #apache软件安装的位置 List ...
- Apache自带 ab压测工具 Windows配置使用说明 - 随笔记录
我们先来了解一下ab工具的概念,摘自网络: ab是apache自带的压力测试工具.ab非常实用,它不仅可以对apache服务器进行网站访问压力测试,也可以对或其它类型的服务器进行压力测试.比如ngin ...
- 数据结构-线性表的链式存储相关算法(C语言实现)
链表的简单介绍 为什么需要线性链表 当然是为了克服顺序表的缺点,在顺序表中,做插入和删除操作时,需要大量的移动元素,导致效率下降. 线性链表的分类 按照链接方式: 按照实现角度: 线性链表的创建和简单 ...
- H5 FormData对象的作用及用法
JS: function uploadFileAndParam() { var url = "http://localhost:42561/api/upload/UploadPost&quo ...
- 容器化的 DevOps 工作流
对于 devops 来说,容器技术绝对是我们笑傲江湖的法宝.本文通过一个小 demo 来介绍如何使用容器技术来改进我们的 devops 工作流. devops 的日常工作中难免会有一些繁琐的重复性劳动 ...
- Linux下的Shell编程(2)环境变量和局部变量
Shell Script是一种弱类型语言,使用变量的时候无需首先声明其类型. 局部变量在本地数据区分配内存进行存储,这个变量归当前的Shell所有,任何子进 程都不能访问本地变量.这些变量与环境变量不 ...
- SSO的全方位解决方案 - Kerberos协议(RFC 1510)
一.桌面SSO和WEB-SSO的局限性 前面我们的解决方案(桌面SSO和WEB-SSO)都有一个共性:要想将一个应用集成到我们的SSO解决方案中,或多或少的需要修改应用程序. Web应用需要配置一个我 ...
- 2.x与3.x差异、条件语句、数据类型、其他
一.输入(raw_input)=====>python2.x版本 #!/usr/bin/env python # -*- coding: utf-8 -*- # 将用户输入的内容赋值给 name ...
- 如何在命令行中让python2和python3同存
初学python,你可能同时安装了python2和3.在我们安装好python之后,我们会面临这样一个问题,在命令行输入"python",可能会出错,或者只能调用其中一个版本,py ...
- 深入理解JavaScript的this指向问题
Javascript的this用法 this是Javascript语言的一个关键字.它代表函数运行时,自动生成的一个内部对象,只能在函数内部使用.比如: function test(){ this.x ...