【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)

题面

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2

2 5 1 5 1

1 5 1 5 2

Sample Output

14

3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

题解

不和前面那道POI的一模一样吗。。。

【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)

在这个的基础上再用容斥原理随便搞一下就可以了。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 101000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int mu[MAX],pri[MAX],tot,s[MAX];
long long g[MAX],n,a,b,K,c,d;
bool zs[MAX];
void Get()
{
zs[1]=true;mu[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else {mu[i*pri[j]]=0;break;}
}
}
for(int i=1;i<=n;++i)s[i]=s[i-1]+mu[i];
}
long long Calc(int a,int b,int K)
{
a/=K;b/=K;
long long ans=0;
int i=1;
if(a>b)swap(a,b);
while(i<=a)
{
int j=min(a/(a/i),b/(b/i));
ans+=1ll*(s[j]-s[i-1])*(a/i)*(b/i);
i=j+1;
}
return ans;
}
int main()
{
n=100000;
Get();
int T=read();
while(T--)
{
a=read();b=read();c=read();d=read();K=read();
printf("%lld\n",Calc(b,d,K)-Calc(a-1,d,K)-Calc(c-1,b,K)+Calc(a-1,c-1,K));
}
return 0;
}

【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)的更多相关文章

  1. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  2. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

  3. [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理

    题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...

  4. BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  5. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  6. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  7. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  8. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  9. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  10. [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演

    1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...

随机推荐

  1. 【特性】select语句中使用字符串链接获取字段值失败

    坑1 在一个多行的表中,想把其中的一个字段值拿出来,组成一个字符串供后面使用. 按照以往,自己就如以下这么写了: declare @sql varchar(8000) set @sql='insert ...

  2. 响应式框架Bootstrap

    概念:Bootstrap将会根据你的屏幕的大小来调整HTML元素的大小 -- 强调 响应式设计的概念. 通过响应式设计,你无需再为你的网站设计一个手机版的.它在任何尺寸的屏幕上看起来都会不错. Boo ...

  3. linux集群架构

    Linux集群架构   根据功能划分为两大类:高可用和负载均衡 高可用集群通常为两台服务器,一台工作,另外一台作为冗余,当提供服务的机器宕机,冗余将接替继续提供服务 实现高可用的开源软件有:heart ...

  4. PHP 批量获取指定目录下的文件列表(递归,穿透所有子目录)

    //调用 $dir = '/Users/xxx/www'; $exceptFolders = array('view','test'); $exceptFiles = array('BaseContr ...

  5. MySQL 日志的类型

    日志文件对于一个服务器来说是非常重要的,它记录着服务器的运行信息,许多操作都会写日到日志文件,通过日志文件可以监视服务器的运行状态及查看服务器的性能,还能对服务器进行排错与故障处理,MySQl中有六种 ...

  6. 高性能JavaScript读书笔记

    零.组织结构 根据引言,作者将全书划分为四个部分: 一.页面加载js的最佳方式(开发前准备) 二.改善js代码的编程技巧(开发中) 三.构建与部署(发布) 四.发布后性能检测与问题追踪(线上问题优化) ...

  7. Java线程的六种状态

    java线程有很多种状态,最主要的有六种,被创建.运行.睡眠.等待.阻塞以及消亡六种,也有很多归结为5种,把睡眠以及等待归结为冻结: 被创建:就是线程被创建,就是new thread()之后就是创建一 ...

  8. (转载,但不知道谁原创)获取SPRING 代理对象的真实实例,可以反射私有方法,便于测试

    /** * 获取 目标对象 * @param proxy 代理对象 * @return * @throws Exception */ public static Object getTarget(Ob ...

  9. 模板语言变量,js变量,js自执行函数之前嵌套调用

    1.模板语言变量 前端html页面中展示 {{ nodeIp }} 2.js变量引用模板语言变量 把模板语言变量传递给js,js去执行页面操作(变量的转换,只适用于字符串) var IP = &quo ...

  10. nginx笔记6-总结

    1.轮询(默认)每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除.2.weight指定轮询几率,weight和访问比率成正比,用于后端服务器性能不均的情况.3.ip_ ...