【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)

题面

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2

2 5 1 5 1

1 5 1 5 2

Sample Output

14

3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

题解

不和前面那道POI的一模一样吗。。。

【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)

在这个的基础上再用容斥原理随便搞一下就可以了。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 101000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int mu[MAX],pri[MAX],tot,s[MAX];
long long g[MAX],n,a,b,K,c,d;
bool zs[MAX];
void Get()
{
zs[1]=true;mu[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else {mu[i*pri[j]]=0;break;}
}
}
for(int i=1;i<=n;++i)s[i]=s[i-1]+mu[i];
}
long long Calc(int a,int b,int K)
{
a/=K;b/=K;
long long ans=0;
int i=1;
if(a>b)swap(a,b);
while(i<=a)
{
int j=min(a/(a/i),b/(b/i));
ans+=1ll*(s[j]-s[i-1])*(a/i)*(b/i);
i=j+1;
}
return ans;
}
int main()
{
n=100000;
Get();
int T=read();
while(T--)
{
a=read();b=read();c=read();d=read();K=read();
printf("%lld\n",Calc(b,d,K)-Calc(a-1,d,K)-Calc(c-1,b,K)+Calc(a-1,c-1,K));
}
return 0;
}

【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)的更多相关文章

  1. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  2. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

  3. [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理

    题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...

  4. BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  5. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  6. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  7. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  8. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  9. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  10. [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演

    1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...

随机推荐

  1. 代码从stepping stone搬移到内存

    为什么要搬移代码?如何搬移代码?arm启动流程回顾:2440:这里我们分析的是从nand flash 启动.2440的启动主要依赖于一个部件(SRAM),又名stepping stone.它的地址为0 ...

  2. 试着把.net的GC讲清楚(1)

    什么是GC? GC(garbage collection)是对内存管理中回收已经不用的内存的一种机制,我们熟知的java和.net都有自己的GC机制,是内存管理的一部分. 为什么会有GC呢?是因为动态 ...

  3. python装饰器探究与参数的领取

    首先上原文, 现在,假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为"装饰器" ...

  4. nodejs http post 请求带参数

    // We need this to build our post string var querystring = require('querystring'); var http = requir ...

  5. hiveql函数笔记(二)

    1.数据查询 //提高聚合的性能 SET hive.map.aggr=true; SELECT count(*),avg(salary) FROM employees; //木匾不允许在一个查询语句中 ...

  6. shell脚本实现anisble客户端脚本分发和密钥授权配置

    ##############################Deploy ansible client shell######################## echo "start d ...

  7. C#泛型简单应用

    最近老板要在app里开展金融模块了,产品一下就丢丢丢二三十个表单下来,怎么办,赶紧写代码,有20多个表单要提交呢,得建20多个表.等等,好像这些表单很相似,公司信息,个人信息,可是还有部分不同信息怎么 ...

  8. 怎样才能收集到所有开发人员的blog(待续…)

    第一个问题,如何找到尽可能多的博客地址? 1. 找到一个知名blog, 遍历这个博客的外链. 2. 遍历找到的外链,并以同样逻辑找到其他博客. 3. 如果遍历到的博客地址已经存在则停止遍历. 还有一种 ...

  9. 深入java虚拟机学习 -- 类的加载机制(续)

    昨晚写 深入java虚拟机学习 -- 类的加载机制 都到1点半了,由于第二天还要工作,没有将上篇文章中的demo讲解写出来,今天抽时间补上昨晚的例子讲解. 这里我先把昨天的两份代码贴过来,重新看下: ...

  10. 【spring-boot】spring aop 面向切面编程初接触

    众所周知,spring最核心的两个功能是aop和ioc,即面向切面,控制反转.这里我们探讨一下如何使用spring aop. 1.何为aop aop全称Aspect Oriented Programm ...