Spring Cloud实践:降级、限流、滚动、灰度、AB、金丝雀的实现思路
端口:8888,方便起见直接读取配置文件,生产环境可以读取git。application-dev.properties为全局配置。先启动配置中心,所有服务的配置(包括注册中心的地址)均从配置中心读取。
consumer 服务消费者
端口:18090,调用服务提供者,为了演示header传递。
core 框架核心包
核心jar包,所有微服务均引用该包,使用AutoConfig实现免配置,模拟生产环境下spring-cloud的使用。
eureka 注册中心
端口:8761,/metadata端点实现metadata信息配置。
provider 服务提供者
端口:18090,服务提供者,无特殊逻辑。
zuul 网关
端口:8080,演示解析token获得label并放入header往后传递
实践:降级、限流、滚动、灰度、AB、金丝雀…
我本人是从dubbo转过来的,经常看到社区里面拿dubbo和spring-cloud做对比,一对比就提到dubbo所谓的降级、限流功能。spring-cloud默认没有这个能力,让我们来扩展spring-cloud,使她具备比dubbo更牛逼的各种能力。
所谓的降级、限流、滚动、灰度、AB、金丝雀等等等等,在我看来无非就是扩展了服务路由能力而已。这里说的服务降级,说的是服务A部署多个实例,实例级别的降级限流。如果要做整个服务A的降级,直接采用docker自动扩容缩容即可。
我们先来看应用场景:服务A 发布了1.0版,部署了3个实例A1、A2、A3,现在要对服务A进行升级,由1.0升级到2.0。先将A1服务流量关闭,使A2、A3负担;升级A1代码版本到2.0;将A1流量调整为1%,观察新版本运行情况,如果运行稳定,则逐步提升流量5%、10%直到完全放开流量控制。A2、A3重复上述步骤。
在上述步骤中,我们想让特别的人使用2.0,其他人还是使用1.0版,稳定后再全员开放。
我们想不依赖sleuth做链路跟踪,想自己实现一套基于ELK的链路跟踪。
我们还有各种千奇百怪的想法。。。
实现思路
要实现这些想法,我们需要对spring-cloud的各个组件、数据流非常熟悉,这样才能知道该在哪里做扩展。一个典型的调用:
外网 --> Zuul网关 --> 服务A --> 服务B --> ...
spring-cloud跟dubbo一样都是客户端负载均衡,所有调用均由Ribbon来做负载均衡选择服务器,所有调用前后会套一层hystrix做隔离、熔断。服务间调用均用带LoadBalanced注解的RestTemplate发出。
RestTemplate --> Ribbon --> hystrix
通过上述分析我们可以看到,我们的扩展点就在Ribbon,Ribbon根据我们的规则,选择正确的服务器即可。
我们先来一个dubbo自带的功能:基于权重的流量控制。dubbo自带的控制台可以设置服务实例粒度的半权,倍权。其实就是在客户端负载均衡时,选择服务器带上权重即可,spring-cloud默认是ZoneAvoidanceRule,优先选择相同Zone下的实例,实例间采用轮询方式做负载均衡。我们的想把基于轮询改为基于权重即可。接下来的问题是,每个实例的权重信息保存在哪里?从哪里取?dubbo放在zookeeper中,spring-cloud放在eureka中。我们只需从eureka拿每个实例的权重信息,然后根据权重来选择服务器即可。具体代码LabelAndWeightMetadataRule(先忽略里面的优先匹配label相关代码)。
放入核心框架
LabelAndWeightMetadataRule写好了,那么我们如何使用它,使之生效呢?有3种方式。
1)写个AutoConfig将LabelAndWeightMetadataRule声明成@Bean,用来替换默认的ZoneAvoidanceRule。这种方式在技术验证、开发测试阶段使用短平快。但是这种方式是强制全局设置,无法个性化。
2)由于spring-cloud的Ribbon并没有实现netflix Ribbon的所有配置项。netflix配置全局rule方式为:ribbon.NFLoadBalancerRuleClassName=package.YourRule,spring-cloud并不支持,spring-cloud直接到服务粒度,只支持SERVICE_ID.ribbon.NFLoadBalancerRuleClassName=package.YourRule。我们可以扩展org.springframework.cloud.netflix.ribbon.PropertiesFactory修正spring cloud ribbon未能完全支持netflix ribbon配置的问题。这样我们可以将全局配置写到配置中心的application-dev.properties全局配置中,然后各个微服务还可以根据自身情况做个性化定制。但是PropertiesFactory属性均为私有,应该是spring cloud不建议在此扩展。参见 https://github.com/spring-cloud/spring-cloud-netflix/issues/1741。
3)使用spring cloud官方建议的@RibbonClient方式。该方式仅存在于spring-cloud单元测试中(在我提问后,现在还存在于spring-cloud issue list)。具体代码参见DefaultRibbonConfiguration、CoreAutoConfiguration。
实际测试
依次开启 config eureka provide(开两个实例,通过启动参数server.port指定不同端口区分) consumer zuul
访问 http://localhost:8761/metadata.html 这是我手写的一个简单的metadata管理界面,分别设置两个provider实例的weight值(设置完需要一段2分钟才能生效),然后访问 http://localhost:8080/provider/user 多刷几次来测试zuul是否按权重发送请求,也可以访问 http://localhost:8080/consumer/test 多刷几次来测试consumer是否按权重来调用provide服务。
进阶,基于标签
基于权重的搞定之后,接下来才是重头戏:基于标签的路由。入口请求含有各种标签,然后我们可以根据标签幻化出各种各样的路由规则。例如只有标注为粉丝的用户才使用新版本(灰度、AB、金丝雀),例如标注为中国的用户请求必须发送到中国的服务器(全球部署),例如标注为写的请求必须发送到专门的写服务实例(读写分离),等等等等,唯一限制你的就是你的想象力。
实现思路
根据标签的控制,我们当然放到之前写的Ribbon的rule中,每个实例配置的不同规则也是跟之前一样放到注册中心的metadata中,关键是标签数据如何传过来。权重随机的实现思路里面有答案,请求都通过zuul进来,因此我们可以在zuul里面给请求打标签,基于用户,IP或其他看你的需求,然后将标签信息放入ThreadLocal中,然后在Ribbon Rule中从ThreadLocal拿出来使用就可以了。然而,按照这个方式去实验时,发现有问题,拿不到ThreadLocal。原因是有hystrix这个东西,回忆下hystrix的原理,为了做到故障隔离,hystrix启用了自己的线程,不在同一个线程ThreadLocal失效。那么还有什么办法能够将标签信息一传到底呢,想想之前有没有人实现过类似的东西,没错sleuth,他的链路跟踪就能够将spam传递下去,翻翻sleuth源码,找找其他资料,发现可以使用HystrixRequestVariableDefault,这里不建议直接使用HystrixConcurrencyStrategy,会和sleuth的strategy冲突。代码参见CoreHeaderInterceptor。现在可以测试zuul里面的rule,看能否拿到标签内容了。
这里还不是终点,解决了zuul的路由,服务A调服务B这里的路由怎么处理呢?zuul算出来的标签如何往后面依次传递下去呢,我们还是抄sleuth:把标签放入header,服务A调服务B时,将服务A header里面的标签放到服务B的header里,依次传递下去。这里的关键点就是:内部的微服务在接收到发来的请求时(zuul-》A,A-》B都是这种情况)我们将请求放入ThreadLocal,哦,不对,是HystrixRequestVariableDefault,还记得上面说的原因么:)。这个容易处理,写一个spring mvc拦截器即可,代码参见CoreHeaderInterceptor。然后发送请求时自动带上这个里面保存的标签信息,参见RestTemplate的拦截器CoreHttpRequestInterceptor。到此为止,技术上全部走通实现。
总结一下:zuul依据用户或IP等计算标签,并将标签放入header里向后传递,后续的微服务通过拦截器,将header里的标签放入RestTemplate请求的header里继续向后接力传递。标签的内容通过放入类似于ThreadLocal的全局变量(HystrixRequestVariableDefault),使Ribbon Rule可以使用。
测试
参见PreFilter源码,模拟了几个用户的标签,参见LabelAndWeightMetadataRule源码,模拟了OR AND两种标签处理策略。依次开启 config eureka provide(开两个实例,通过启动参数server.port指定不同端口区分) consumer zuul
访问 http://localhost:8761/metadata.html 设置第一个provide 实例 orLabel为 CN,Test 发送请求头带入Authorization: emt 访问 http://localhost:8080/provider/user 多刷几次,可以看到zuul所有请求均路由给了第一个实例。访问 http://localhost:8080/consumer/test 多刷几次,可以看到,consumer调用均路由给了第一个实例。
设置第二个provide 实例 andLabel为 EN,Male 发送请求头带入Authorization: em 访问 http://localhost:8080/provider/user 多刷几次,可以看到zuul所有请求均路由给了第二个实例。访问 http://localhost:8080/consumer/test 多刷几次,可以看到,consumer调用均路由给了第二个实例。
Authorization头还可以设置为PreFilter里面的模拟token来做测试,至此所有内容讲解完毕,技术路线拉通,剩下的就是根据需求来完善你自己的路由策略啦。
http://www.tuicool.com/articles/3ymY3er
1.2 金丝雀发布
实践要点
1、金丝雀发布一般先发 1 台,或者一个小比例,例如 2% 的服务器,主要做流量验证用,也称为金丝雀 (Canary) 测试(国内常称灰度测试)。以前旷工开矿下矿洞前,先会放一只金丝雀进去探是否有有毒气体,看金丝雀能否活下来,金丝雀发布由此得名。简单的金丝雀测试一般通过手工测试验证,复杂的金丝雀测试需要比较完善的监控基础设施配合,通过监控指标反馈,观察金丝雀的健康状况,作为后续发布或回退的依据。
2、如果金丝测试通过,则把剩余的 V1 版本全部升级为 V2 版本。如果金丝雀测试失败,则直接回退金丝雀,发布失败。
优势:
用户体验影响小,金丝雀发布过程出现问题只影响少量用户
不足:
发布自动化程度不够,发布期间可引发服务中断
适用场合:
1、对新版本功能或性能缺乏足够信心
2、用户体验要求较高的网站业务场景
3、缺乏足够的自动化发布工具研发能力
2.1 蓝绿发布(双服务器组)
蓝绿发布仅适用于双服务器组发布,可以认为是对蛮力发布的一种简单优化发布方式。
1、V1 版本称为蓝组,V2 版本称为绿组,发布时通过 LB 一次性将流量从蓝组直接切换到绿组,不经过金丝雀和滚动发布,蓝绿发布由此得名;
2、出现问题回退也很直接,通过 LB 直接将流量切回蓝组。
3、发布初步成功后,蓝组机器一般不直接回收,而是留一个待观察期,视具体情况观察期的时间可长可短,观察期过后确认发布无问题,则可以回收蓝组机器。
优势:
(1)升级切换和回退速度非常快
不足:
(1)切换是全量的,如果 V2 版本有问题,则对用户体验有直接影响;
(2)需要两倍机器资源;
适用场合:
(1)对用户体验有一定容忍度的场景
(2)机器资源有富余或者可以按需分配(AWS 云,或自建容器云)
(3)暂不具备复杂滚动发布工具研发能力
https://www.cnblogs.com/apanly/p/8784096.html
Spring Cloud实践:降级、限流、滚动、灰度、AB、金丝雀的实现思路的更多相关文章
- spring cloud gateway 之限流篇
转载请标明出处: https://www.fangzhipeng.com 本文出自方志朋的博客 在高并发的系统中,往往需要在系统中做限流,一方面是为了防止大量的请求使服务器过载,导致服务不可用,另一方 ...
- 0.9.0.RELEASE版本的spring cloud alibaba sentinel限流、降级处理实例
先看服务提供方的,我们在原来的sentinel实例(参见0.9.0.RELEASE版本的spring cloud alibaba sentinel实例)上加上限流.降级处理,三板斧只需在最后那一斧co ...
- Spring Cloud微服务限流之Sentinel+Apollo生产实践
Sentinel概述 在基于Spring Cloud构建的微服务体系中,服务之间的调用链路会随着系统的演进变得越来越长,这无疑会增加了整个系统的不可靠因素.在并发流量比较高的情况下,由于网络调用之间存 ...
- 微服务架构spring cloud - gateway网关限流
1.算法 在高并发的应用中,限流是一个绕不开的话题.限流可以保障我们的 API 服务对所有用户的可用性,也可以防止网络攻击. 一般开发高并发系统常见的限流有:限制总并发数(比如数据库连接池.线程池). ...
- Spring Cloud Gateway 网关限流
Spring Cloud Gateway 限流 一.背景 二.实现功能 三.网关层限流 1.使用默认的redis来限流 1.引入jar包 2.编写配置文件 3.网关正常响应 4.网关限流响应 2.自定 ...
- spring boot gateway自定义限流
参考:https://blog.csdn.net/ErickPang/article/details/84680132 采用自带默认网关请参照微服务架构spring cloud - gateway网关 ...
- Hystrix介绍以及服务的降级限流熔断
(dubbo熔断,Hystrix问的少) 无论是缓存层还是存储层都会有出错的概率,可以将它们视同为资源.作为并发量较大的系统,假如有一个资源不可用,可能会造成线程全部 hang (挂起)在这个资源上, ...
- springBoot整合Sentinel实现降级限流熔断
由于hystrix的停止更新,以及阿里Sentinel在历年双十一的贡献.项目中使用了Sentinel,今天我们来讲讲Sentinel的入门教程,本文使用1.6.3版本进行讲解 本文通过Sentine ...
- springcloud3(六) 服务降级限流熔断组件Resilience4j
代码地址:https://github.com/showkawa/springBoot_2017/tree/master/spb-demo/spb-gateway/src/test/java/com/ ...
随机推荐
- ExtJS:文件上传实例
ExtJS:文件上传实例 var ext_dateFormat = 'Y-m-d H:i:s'; var dateFormat = 'yyyy-MM-dd HH:mm:ss'; var date = ...
- 最大的k个数问题
代码来源: http://blog.csdn.net/v_JULY_v 调整堆为小顶堆的代码片:基本思想就是把孩子节点中大的一个跟父节点交换 void HeapAdjust(int array[], ...
- 猴子吃桃问题---C实现
原题:猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了了一个.第二天早上又将剩下的桃子吃掉一半,又多吃了一个.以后每一天早上都吃前一天剩下桃子的一半零一个.到第十天早上想再吃时,发现 只剩下 ...
- 关于GPL329A添加摄像头驱动需要更改的配置脚本
我今天要添加一个ov2685的驱动进Digogo这部机子,当然要让它开机自动启动,就要想办法让它的.ko在启动文件系统的时候要自动被装载,这样上层打开摄像头才能加载摄像头驱动. 我找到源码工程对应添加 ...
- 四种生成和解析XML文档的方法详解
众所周知,现在解析XML的方法越来越多,但主流的方法也就四种,即:DOM.SAX.JDOM和DOM4J 下面首先给出这四种方法的jar包下载地址 DOM:在现在的Java JDK里都自带了,在xml- ...
- Aop实现SqlSugar自动事务
http://www.cnblogs.com/jaycewu/p/7733114.html
- mysql 带条件的sum/count 使用技巧
本测试只是简单测试,其用途不在于代替count函数配合where函数进行聚合计算,而是在复杂查询中在sum/count中加入条件,一次性求出不同条件下的聚合结果. 1.插入测试数据如图 2.sum计算 ...
- AngularJs 学习笔记(四)服务
模型是指$scope上保存的包含瞬时状态数据的JavaScript对象. 服务是一个单例对象,只会被$injector实例化一次,并且是在需要的时候才会被创建,服务提供了把与特定功能相关联的方法集中在 ...
- mac上Python多版本共存
http://www.cnblogs.com/mingaixin/p/6295963.html https://www.cnhzz.com/pyenv_virtualenv_virtaulenvwra ...
- ThinkPHP简单的验证码实现
ThinkPHP简单的验证码实现 写一个最简单的TP验证码. 写Controller 首先在Controller/IndexController.class.php(简称Index)文件中编辑: &l ...