故障描述:与客户沟通,初步确认故障范围大概是在上午的8:30-10:30之间,反应故障现象是Tomcat的连接数满导致应用无法连接,数据库alert中无明显报错,需要协助排查原因。

1.导入包含故障时刻的数据

为了便于后续分析,我向客户索要了从昨天下午13:00到今天18:00的awrdump,导入到自己的实验环境进行分析。

生产环境导出awrdump:

@?/rdbms/admin/awrextr

测试环境导入awrdump:

SYS@jyzhao1 >select * from dba_directories;
SYS@jyzhao1 >create directory jy as '/home/oracle/awrdump';
SYS@jyzhao1 >select * from dba_directories;
SYS@jyzhao1 >!mkdir -p /home/oracle/awrdump SYS@jyzhao1 >@?/rdbms/admin/awrload
省略部分输出..
... Dropping AWR_STAGE user End of AWR Load

2.创建m_ash表,明确故障时刻

创建m_ash表:

--create table
create table m_ash20180322 as select * from dba_hist_active_sess_history where dbid=&dbid;

输入生产库对应的dbid,完成创建分析表。

select to_char(sample_time, 'yyyy-mm-dd hh24:mi'), count(1)
FROM m_ash20180322
group by to_char(sample_time, 'yyyy-mm-dd hh24:mi')
order by 1;

根据生成的数据生成折线图如下:

可以从图中明确故障时刻,即在10:00、12:30、14:10这三个时刻会话都明显上升(积压),看来客户的反馈时间点并没有包含所有异常时刻。

另外,引用下maclean的诊断脚本,可以看到核心意思差不多,只是进一步将instance_number区分开细化:

--验证导出的ASH时间范围:
select
t.dbid, t.instance_number, min(sample_time), max(sample_time), count(*) session_count
from m_ash20180322 t
group by t.dbid, t.instance_number
order by dbid, instance_number; --确认问题发生的精确时间范围:
select
dbid, instance_number, sample_id, sample_time, count(*) session_count
from m_ash20180322 t
group by dbid, instance_number, sample_id, sample_time
order by dbid, instance_number, sample_time;

3.确定异常时刻的top n event

确定每个采样点的top n event,下面也是参考maclean的脚本。
比如我这里以2018-03-22 09:59:00 - 2018-03-22 10:00:00为例:

select t.dbid,
t.sample_id,
t.sample_time,
t.instance_number,
t.event,
t.session_state,
t.c session_count
from (select t.*,
rank() over(partition by dbid, instance_number, sample_time order by c desc) r
from (select /*+ parallel 8 */
t.*,
count(*) over(partition by dbid, instance_number, sample_time, event) c,
row_number() over(partition by dbid, instance_number, sample_time, event order by 1) r1
from dba_hist_active_sess_history t
where sample_time >
to_timestamp('2018-03-22 09:59:00',
'yyyy-mm-dd hh24:mi:ss')
and sample_time <
to_timestamp('2018-03-22 10:00:00',
'yyyy-mm-dd hh24:mi:ss')
) t
where r1 = 1) t
where r < 3
order by dbid, instance_number, sample_time, r;

其他异常时刻,输入对应的变量值:

select t.dbid,
t.sample_id,
t.sample_time,
t.instance_number,
t.event,
t.session_state,
t.c session_count
from (select t.*,
rank() over(partition by dbid, instance_number, sample_time order by c desc) r
from (select /*+ parallel 8 */
t.*,
count(*) over(partition by dbid, instance_number, sample_time, event) c,
row_number() over(partition by dbid, instance_number, sample_time, event order by 1) r1
from dba_hist_active_sess_history t
where sample_time >
to_timestamp('&begin_sample_time',
'yyyy-mm-dd hh24:mi:ss')
and sample_time <
to_timestamp('&end_sample_time',
'yyyy-mm-dd hh24:mi:ss')
) t
where r1 = 1) t
where r < 3
order by dbid, instance_number, sample_time, r;

2018-03-22 12:29:00

2018-03-22 12:30:00

2018-03-22 14:09:00

2018-03-22 14:10:00

综上,3个连接数堆积的异常时刻TOP event都是 “enq: TX - row lock contention”。

4.确定最终的top holder

使用maclean的脚本,观察每个采样点的等待链:

select
level lv,
connect_by_isleaf isleaf,
connect_by_iscycle iscycle,
t.dbid,
t.sample_id,
t.sample_time,
t.instance_number,
t.session_id,
t.sql_id,
t.session_type,
t.event,
t.session_state,
t.blocking_inst_id,
t.blocking_session,
t.blocking_session_status
from m_ash20180322 t
where sample_time >
to_timestamp('2018-03-22 09:59:00',
'yyyy-mm-dd hh24:mi:ss')
and sample_time <
to_timestamp('2018-03-22 10:00:00',
'yyyy-mm-dd hh24:mi:ss')
start with blocking_session is not null
connect by nocycle
prior dbid = dbid
and prior sample_time = sample_time
/*and ((prior sample_time) - sample_time between interval '-1'
second and interval '1' second)*/
and prior blocking_inst_id = instance_number
and prior blocking_session = session_id
and prior blocking_session_serial# = session_serial#
order siblings by dbid, sample_time;

结果如下:

进一步筛选,将isleaf=1的叶(top holder)找出来:

--基于上一步的原理来找出每个采样点的最终top holder:
select t.lv,
t.iscycle,
t.dbid,
t.sample_id,
t.sample_time,
t.instance_number,
t.session_id,
t.sql_id,
t.session_type,
t.event,
t.seq#,
t.session_state,
t.blocking_inst_id,
t.blocking_session,
t.blocking_session_status,
t.c blocking_session_count
from (select t.*,
row_number() over(partition by dbid, instance_number, sample_time order by c desc) r
from (select t.*,
count(*) over(partition by dbid, instance_number, sample_time, session_id) c,
row_number() over(partition by dbid, instance_number, sample_time, session_id order by 1) r1
from (select /*+ parallel 8 */
level lv,
connect_by_isleaf isleaf,
connect_by_iscycle iscycle,
t.*
from m_ash20180322 t
where sample_time >
to_timestamp('2018-03-22 09:59:00',
'yyyy-mm-dd hh24:mi:ss')
and sample_time <
to_timestamp('2018-03-22 10:00:00',
'yyyy-mm-dd hh24:mi:ss')
start with blocking_session is not null
connect by nocycle
prior dbid = dbid
and prior sample_time = sample_time
/*and ((prior sample_time) - sample_time between interval '-1'
second and interval '1' second)*/
and prior blocking_inst_id = instance_number
and prior blocking_session = session_id
and prior
blocking_session_serial# = session_serial#) t
where t.isleaf = 1) t
where r1 = 1) t
where r < 3
order by dbid, sample_time, r;

对其他异常时段进行分析:

2018-03-22 12:29:00

2018-03-22 12:30:00

2018-03-22 14:09:00

2018-03-22 14:10:00

-- top holder: DIY sample_time
select t.lv,
t.iscycle,
t.dbid,
t.sample_id,
t.sample_time,
t.instance_number,
t.session_id,
t.sql_id,
t.session_type,
t.event,
t.seq#,
t.session_state,
t.blocking_inst_id,
t.blocking_session,
t.blocking_session_status,
t.c blocking_session_count
from (select t.*,
row_number() over(partition by dbid, instance_number, sample_time order by c desc) r
from (select t.*,
count(*) over(partition by dbid, instance_number, sample_time, session_id) c,
row_number() over(partition by dbid, instance_number, sample_time, session_id order by 1) r1
from (select /*+ parallel 8 */
level lv,
connect_by_isleaf isleaf,
connect_by_iscycle iscycle,
t.*
from m_ash20180322 t
where sample_time >
to_timestamp('&begin_sample_time',
'yyyy-mm-dd hh24:mi:ss')
and sample_time <
to_timestamp('&end_sample_time',
'yyyy-mm-dd hh24:mi:ss')
start with blocking_session is not null
connect by nocycle
prior dbid = dbid
and prior sample_time = sample_time
/*and ((prior sample_time) - sample_time between interval '-1'
second and interval '1' second)*/
and prior blocking_inst_id = instance_number
and prior blocking_session = session_id
and prior
blocking_session_serial# = session_serial#) t
where t.isleaf = 1) t
where r1 = 1) t
where r < 3
order by dbid, sample_time, r;

发现所有的异常时刻最终阻塞都是实例1的sid为3548的session,不再赘述。

5.总结

从第四步可以看到,top holder都是实例1,会话3548.
比如可以看到实例1的481会话被实例2的6377会话阻塞,然后实例2的6377会话又被实例1的3548会话阻塞。
通过sql_id可以查询到sql文本:

select * from dba_hist_sqltext where sql_id = '&sql_id';

可以看到实例1的3548会话当前正在执行的SQL只是一个查询语句,当前会话状态是ON CPU,所以推测该会话之前有DML的事物未提交导致阻塞。

去查询该会话的DML操作时,也有update和insert操作,但是update操作已经无法找到对应SQL文本。

select t.event, t.*
from m_ash20180322 t
where instance_number = 1
and session_id = 3548
and t.sql_opname <> 'SELECT';

其实从ash也可以看到关于3548阻塞的信息,甚至从addm的建议中也会有类似建议:

   Rationale
The session with ID 3548 and serial number 8795 in instance number 1 was
the blocking session responsible for 52% of this recommendation's
benefit.
Rationale
The session with ID 6377 and serial number 30023 in instance number 2
was the blocking session responsible for 47% of this recommendation's
benefit.

只不过我们从底层查询,可以看到6377实际也是被3548阻塞,找到最终阻塞者。

btw,从导入的awrdump中,除了可以取awr外,同样可以支持取awrsqrpi和addmrpti以及ashrpti,非常方便:

SYS@jyzhao1 >@?/rdbms/admin/awrrpti
SYS@jyzhao1 >@?/rdbms/admin/awrsqrpi
SYS@jyzhao1 >@?/rdbms/admin/ashrpti
SYS@jyzhao1 >@?/rdbms/admin/addmrpti

6.reference

- http://feed.askmaclean.com/archives/dba_hist_active_sess_history.html

记录一则enq: TX - row lock contention的分析过程的更多相关文章

  1. 解决一则enq: TX – row lock contention的性能故障

    上周二早上,收到项目组的一封邮件: 早上联代以下时间点用户有反馈EDI导入"假死",我们跟踪了EDI导入服务,服务是正常在跑,可能是处理的慢所以用户感觉是"假死" ...

  2. ORACLE等待事件:enq: TX - row lock contention

    enq: TX - row lock contention等待事件,这个是数据库里面一个比较常见的等待事件.enq是enqueue的缩写,它是一种保护共享资源的锁定机制,一个排队机制,先进先出(FIF ...

  3. Tuning “enq:TX – row lock contention” events

    enq是一种保护共享资源的锁定机制,一个排队机制 排它机制从一个事务的第一次改变直到rollback or commit 结束这个事务, TX等待mode是6,当一个session 在一个表的行级锁定 ...

  4. AWR之-enq TX - row lock contention的性能故障-转

    1 对这一个小时进行AWR的收集和分析,首先,从报告头中看到DB Time达到近500分钟,(DB Time)/Elapsed=8,这个比值偏高:   Snap Id Snap Time Sessio ...

  5. enq: TX - row lock contention故障处理一则

    一个非常easy的问题,之所以让我对这个问题进行总结.一是由于没我想象的简单,在处理的过程中遇到了一些磕磕碰碰,甚至绕了一些弯路.二是引发了我对故障处理时的一些思考. 6月19日,下午5点左右.数据库 ...

  6. 记一则update 发生enq: TX - row lock contention 的处理方法

    根据事后在虚拟机中复现客户现场发生的情况,做一次记录(简化部分过程,原理不变) 客户端1执行update语句 SQL> select * from test; ID NAME --------- ...

  7. ORACLE AWR结合ASH诊断分析enq: TX - row lock contention

    公司用户反馈一系统在14:00~15:00(2016-08-16)这个时间段反应比较慢,于是生成了这个时间段的AWR报告, 如上所示,通过Elapsed Time和DB Time对比分析,可以看出在这 ...

  8. 大表建立索引引发enq: TX - row lock contention等待

    今天要给一张日志表(6000w数据)建立索引,导致生产系统行锁部分功能卡住 create index idx_tb_cid on tb_login_log(user_id); 开始执行后大概花费了20 ...

  9. enq: TX - row lock contention 参数P1,P2,P3说明

    enq: TX - row lock contention三个参数,例如,下面的等待事件 * P1 = name|mode          <<<<<<< ...

随机推荐

  1. Spring data mongodb @CreatedBy@LastModifiedBy@CreatedBy@LastModifiedBy SpringSecurityAuditorAware,只记录用户名

    要在Spring data mongodb 中使用@CreatedBy@LastModifiedBy@CreatedBy@LastModifiedBy  这四个注解 必须实现 SpringSecuri ...

  2. C#调用WebService时插入cookie

    SOAPUI插入Cookie的方法 SOAP插入cookie的方法如下,点击Head,点击加号,然后直接设置就可以了. C#中调用webService时插入Cookie 由于调用的时候必须要带上coo ...

  3. bash文件的详细解读

    一.bash的分类 1. 按生效范围分类 全局生效 /etc/profile /etc/profile.d/*.sh /etc/bashrc 个人用户生效 ~/.bash_profile ~/.bas ...

  4. iBrand 产品工具包:Laravel Database Logger

    iBrand 社交新零售电商产品从2016年9月启动至今,已经趋于稳定,而且已经初步得到市场的检验,特别能抗住电商中秒杀时高并发的交易场景. 接下来我们团队会逐步开源一些正在使用的工具和解决方案,并且 ...

  5. Jmeter MD5插件

    实际业务中,会要求 HTTP 协议中附加 MD5 校验字段, 防止请求参数被恶意篡改, 对于开发同学来说, 这是个很简单的需求. 但是给自动化测试增加了难度, Jmeter 原生不支持这个功能,应测试 ...

  6. 【java学习笔记】Properties

    Properties:可以持久化的映射,规定键和值的类型是String. Properties对象必须放到.properties文件中,其中properties文件默认为西欧编码,也因此不存储中文. ...

  7. CSRF的本质及防御

    本质:产生的原因本质上是参数可知或可预测 防御: 1.加密参数:加密加盐,不可知,不可预测      忧虑,引入其他麻烦:一.数据分析困难                               ...

  8. IIS部署web,字体404的问题

    今天在部署测试环境的时候,遇到字体无法访问的情况,如下图 其实,字体是存在的.路径也没有错.因为点超链接是可以看到的. 所以,怀疑是服务器不识别该字体.经过网上查找.找到了配置IIS的方法.让服务器可 ...

  9. 微信开源的Android热补丁框架 Tinker

    前不久,微信开源了其Android热补丁框架Tinker,它的特别之处在于放在github.com/Tencent下面,是该账号下第一个正式的开源项目,可以看到腾讯对它的重视和认可. 早在6月份微信客 ...

  10. 一些常用的api接口、

    taobao ip地址的api http://ip.taobao.com/service/getIpInfo.php?ip=IP 返回参数 code 状态码 data 数据信息 country 国家  ...