Cocos2d-x中的一个单例效果:

#ifndef
__Moon3d__ParticleManager__

#define
__Moon3d__ParticleManager__

#include
"cocos2d.h"

USING_NS_CC;

class
ParticleManager

{

public:

static
ParticleManager*
getInstance()//定义获取实例方法,单例设计模式.see
notes

{

if (
m_pInstance ==
nullptr )//如果实例为空,

m_pInstance =
new
ParticleManager();//创建实例

return
m_pInstance;//返回实例

}

private:

ParticleManager();//构造函数

static
ParticleManager*
m_pInstance;//粒子管理器实例

class
CGarbo//内部类,主要作用是退出游戏的时候,清理内存,原理:程序在结束的时候,系统会自动析构所有的全局变量。事实上,系统也会析构所有的类的静态成员变量,就像这些静态成员也是全局变量一样。

{

public:

~CGarbo()//析构函数

{

if (ParticleManager::m_pInstance!=
nullptr)//如果实例不为空

{

delete
ParticleManager::m_pInstance;//清除单例

}

}

};

static
CGarbo
m_garbo;//定义内部类变量

public:

std::map<std::string,
ValueMap>
m_plistMap;//定义存放粒子数据的集合

void
AddPlistData(std::string
strPlist,std::string
strName);//把粒子数据添加到集合里

ValueMap
GetPlistData(std::string
strName);//从粒子集合中获取粒子数据

};

#endif
/* defined(__Moon3d__ParticleManager__) */

#include
"ParticleManager.h"

ParticleManager*
ParticleManager::m_pInstance=NULL;//变量初始化

ParticleManager::CGarbo
ParticleManager::m_garbo;//变量初始化

ParticleManager::ParticleManager()

{

m_plistMap.clear();//构造函数集合清理

}

void
ParticleManager::AddPlistData(std::string
strPlist,std::string
strName)

{

auto
plistData=FileUtils::getInstance()->getValueMapFromFile(strPlist);//获取粒子数据

std::map<std::string,
ValueMap>::iterator
it =
m_plistMap.begin();//获取集合

m_plistMap.insert(it,std::pair<std::string,
ValueMap>(strName,plistData));//把粒子数据存放到集合里

}

ValueMap
ParticleManager::GetPlistData(std::string
strplist)

{

auto
plistData=m_plistMap.find(strplist)->second;//获取粒子数据

return
plistData;//返回粒子数据

}

说明:

/*****************************************************************************

单例模式也称为单件模式、单子模式,可能是使用最广泛的设计模式。其意图是保证一个类仅有一个实例,并提供一个访问它的全局访问点,该实例被所有程序模块共享。有很多地方需要这样的功能模块,如系统的日志输出,GUI应用必须是单鼠标,MODEM的联接需要一条且只需要一条电话线,操作系统只能有一个窗口管理器,一台PC连一个键盘。

单例模式有许多种实现方法,在C++中,甚至可以直接用一个全局变量做到这一点,但这样的代码显的很不优雅。 使用全局对象能够保证方便地访问实例,但是不能保证只声明一个对象——也就是说除了一个全局实例外,仍然能创建相同类的本地实例。

《设计模式》一书中给出了一种很不错的实现,定义一个单例类,使用类的私有静态指针变量指向类的唯一实例,并用一个公有的静态方法获取该实例。

单例模式通过类本身来管理其唯一实例,这种特性提供了解决问题的方法。唯一的实例是类的一个普通对象,但设计这个类时,让它只能创建一个实例并提供对此实例的全局访问。唯一实例类Singleton在静态成员函数中隐藏创建实例的操作。习惯上把这个成员函数叫做Instance(),它的返回值是唯一实例的指针。

定义如下:

[cpp] view plaincopy

class CSingleton

{

private:

CSingleton()   //构造函数是私有的

{

}

static CSingleton *m_pInstance;

public:

static CSingleton * GetInstance()

{

if(m_pInstance == NULL)  //判断是否第一次调用

m_pInstance = new CSingleton();

return m_pInstance;

}

};

用户访问唯一实例的方法只有GetInstance()成员函数。如果不通过这个函数,任何创建实例的尝试都将失败,因为类的构造函数是私有的。GetInstance()使用懒惰初始化,也就是说它的返回值是当这个函数首次被访问时被创建的。这是一种防弹设计——所有GetInstance()之后的调用都返回相同实例的指针:

CSingleton* p1 = CSingleton :: GetInstance();

CSingleton* p2 = p1->GetInstance();

CSingleton & ref = * CSingleton :: GetInstance();

对GetInstance稍加修改,这个设计模板便可以适用于可变多实例情况,如一个类允许最多五个实例。

单例类CSingleton有以下特征:

它有一个指向唯一实例的静态指针m_pInstance,并且是私有的;

它有一个公有的函数,可以获取这个唯一的实例,并且在需要的时候创建该实例;

它的构造函数是私有的,这样就不能从别处创建该类的实例。

大多数时候,这样的实现都不会出现问题。有经验的读者可能会问,m_pInstance指向的空间什么时候释放呢?更严重的问题是,该实例的析构函数什么时候执行?

如果在类的析构行为中有必须的操作,比如关闭文件,释放外部资源,那么上面的代码无法实现这个要求。我们需要一种方法,正常的删除该实例。

可以在程序结束时调用GetInstance(),并对返回的指针掉用delete操作。这样做可以实现功能,但不仅很丑陋,而且容易出错。因为这样的附加代码很容易被忘记,而且也很难保证在delete之后,没有代码再调用GetInstance函数。

一个妥善的方法是让这个类自己知道在合适的时候把自己删除,或者说把删除自己的操作挂在操作系统中的某个合适的点上,使其在恰当的时候被自动执行。

我们知道,程序在结束的时候,系统会自动析构所有的全局变量。事实上,系统也会析构所有的类的静态成员变量,就像这些静态成员也是全局变量一样。利用这个特征,我们可以在单例类中定义一个这样的静态成员变量,而它的唯一工作就是在析构函数中删除单例类的实例。如下面的代码中的CGarbo类(Garbo意为垃圾工人):

[cpp] view plaincopy

class CSingleton

{

private:

CSingleton()

{

}

static CSingleton *m_pInstance;

class CGarbo   //它的唯一工作就是在析构函数中删除CSingleton的实例

{

public:

~CGarbo()

{

if(CSingleton::m_pInstance)

delete CSingleton::m_pInstance;

}

};

static CGarbo Garbo; 
//定义一个静态成员变量,程序结束时,系统会自动调用它的析构函数

public:

static CSingleton * GetInstance()

{

if(m_pInstance == NULL)  //判断是否第一次调用

m_pInstance = new CSingleton();

return m_pInstance;

}

};

类CGarbo被定义为CSingleton的私有内嵌类,以防该类被在其他地方滥用。

程序运行结束时,系统会调用CSingleton的静态成员Garbo的析构函数,该析构函数会删除单例的唯一实例。

使用这种方法释放单例对象有以下特征:

在单例类内部定义专有的嵌套类;

在单例类内定义私有的专门用于释放的静态成员;

利用程序在结束时析构全局变量的特性,选择最终的释放时机;

使用单例的代码不需要任何操作,不必关心对象的释放。

进一步的讨论

但是添加一个类的静态对象,总是让人不太满意,所以有人用如下方法来重新实现单例和解决它相应的问题,代码如下:

[cpp] view plaincopy

class CSingleton

{

private:

CSingleton()   //构造函数是私有的

{

}

public:

static CSingleton & GetInstance()

{

static CSingleton instance;   //局部静态变量

return instance;

}

};

使用局部静态变量,非常强大的方法,完全实现了单例的特性,而且代码量更少,也不用担心单例销毁的问题。

但使用此种方法也会出现问题,当如下方法使用单例时问题来了,

Singleton singleton = Singleton :: GetInstance();

这么做就出现了一个类拷贝的问题,这就违背了单例的特性。产生这个问题原因在于:编译器会为类生成一个默认的构造函数,来支持类的拷贝。

最后没有办法,我们要禁止类拷贝和类赋值,禁止程序员用这种方式来使用单例,当时领导的意思是GetInstance()函数返回一个指针而不是返回一个引用,函数的代码改为如下:

[cpp] view plaincopy

class CSingleton

{

private:

CSingleton()   //构造函数是私有的

{

}

public:

static CSingleton * GetInstance()

{

static CSingleton instance;   //局部静态变量

return &instance;

}

};

但我总觉的不好,为什么不让编译器不这么干呢。这时我才想起可以显示的声明类拷贝的构造函数,和重载 =
操作符,新的单例类如下:

[cpp] view plaincopy

class CSingleton

{

private:

CSingleton()   //构造函数是私有的

{

}

CSingleton(const CSingleton &);

CSingleton & operator = (const CSingleton &);

public:

static CSingleton & GetInstance()

{

static CSingleton instance;   //局部静态变量

return instance;

}

};

关于Singleton(const Singleton);和 Singleton & operate = (const Singleton&);函数,需要声明成私有的,并且只声明不实现。这样,如果用上面的方式来使用单例时,不管是在友元类中还是其他的,编译器都是报错。

不知道这样的单例类是否还会有问题,但在程序中这样子使用已经基本没有问题了。

考虑到线程安全、异常安全,可以做以下扩展

[cpp] view plaincopy

class Lock

{

private:

CCriticalSection m_cs;

public:

Lock(CCriticalSection  cs) : m_cs(cs)

{

m_cs.Lock();

}

~Lock()

{

m_cs.Unlock();

}

};

class Singleton

{

private:

Singleton();

Singleton(const Singleton &);

Singleton& operator = (const Singleton &);

public:

static Singleton *Instantialize();

static Singleton *pInstance;

static CCriticalSection cs;

};

Singleton* Singleton::pInstance = 0;

Singleton* Singleton::Instantialize()

{

if(pInstance == NULL)

{   //double check

Lock lock(cs);           //用lock实现线程安全,用资源管理类,实现异常安全

//使用资源管理类,在抛出异常的时候,资源管理类对象会被析构,析构总是发生的无论是因为异常抛出还是语句块结束。

if(pInstance == NULL)

{

pInstance = new Singleton();

}

}

return pInstance;

}

之所以在Instantialize函数里面对pInstance
是否为空做了两次判断,因为该方法调用一次就产生了对象,pInstance == NULL 大部分情况下都为false,如果按照原来的方法,每次获取实例都需要加锁,效率太低。而改进的方法只需要在第一次 调用的时候加锁,可大大提高效率。

*/

1.Cocos2d-x-3.2编写3d打飞机,粒子管理器代码的更多相关文章

  1. 2.Cocos2d-x-3.2编写3d打飞机,项目代码总结

    1.AppDelete中applicationDidFinishLaunching代码示范 2.当电话来了时,停止恢复游戏声音的代码(在AppDelegate中加入下面代码) boolAppDel ...

  2. [Axiom 3D]3.SceneManager场景管理器

    首先看看Axiom.Core命名空间下public abstract class SceneManager : DisposableObject A SceneManager organizes th ...

  3. WPF 像素着色器入门:使用 Shazzam Shader Editor 编写 HLSL 像素着色器代码

    原文:WPF 像素着色器入门:使用 Shazzam Shader Editor 编写 HLSL 像素着色器代码 HLSL,High Level Shader Language,高级着色器语言,是 Di ...

  4. jQuery旋转木马仿3D效果的图片切换特效代码

    用jQuery实现的一款仿3D效果的图片切换特效代码,类似旋转木马一样,幻灯图片以三维视觉上下滑动切换,效果很酷炫,兼容IE8.360.FireFox.Chrome.Safari.Opera.傲游.搜 ...

  5. iOS书摘之编写高质量iOS与OS X代码的52个有效方法

    来自<Effective Objective-C 2.0编写高质量iOS与OS X代码的52个有效方法>一书的摘要总结 一.熟悉Objective-C 了解Objective-C语言的起源 ...

  6. 使用CLRMD编写一个自己的C#调试器

    博客搬到了fresky.github.io - Dawei XU,请各位看官挪步.最新的一篇是:使用CLRMD编写一个自己的C#调试器.

  7. 第一章 熟悉Objective -C 编写高质量iOS与OS X代码的52 个有效方法

    第一章 熟悉Objective -C   编写高质量iOS与OS  X代码的52 个有效方法   第一条: 了解Objective-C 语言的起源 关键区别在于 :使用消息结构的语言,其运行时所应执行 ...

  8. qt的应用层主要是大型3d,vr,管理软件和器械嵌入软件(有上千个下一代软件黑科技项目是qt的,美国宇航局,欧洲宇航局,超级战舰DDG1000)

    作者:Nebula.Trek链接:https://www.zhihu.com/question/24316868/answer/118944490来源:知乎著作权归作者所有.商业转载请联系作者获得授权 ...

  9. 通过利用immutability的能力编写更安全和更整洁的代码

    通过利用immutability的能力编写更安全和更整洁的代码 原文:Write safer and cleaner code by leveraging the power of "Imm ...

随机推荐

  1. [HNOI2013]比赛

    题目描述 沫沫非常喜欢看足球赛,但因为沉迷于射箭游戏,错过了最近的一次足球联赛.此次联 赛共N支球队参加,比赛规则如下: (1) 每两支球队之间踢一场比赛. (2) 若平局,两支球队各得1分. (3) ...

  2. SAC E#1 - 一道中档题 Factorial

    题目背景 SOL君(炉石主播)和SOL菌(完美信息教室讲师)是好朋友. 题目描述 SOL君很喜欢阶乘.而SOL菌很喜欢研究进制. 这一天,SOL君跟SOL菌炫技,随口算出了n的阶乘. SOL菌表示不服 ...

  3. hdu 5428

    题意:一个数是这n个数的乘,找出它一个不是素数的最小因子 求出所有数的所有质因子中最小的两个,相乘就是答案.如果所有数字的质因子个数不到两个,那么就是无解. #include<iostream& ...

  4. [bzoj4868][Shoi2017]期末考试

    来自FallDream 的博客,未经允许,请勿转载,谢谢. 有n位同学,每位同学都参加了全部的m门课程的期末考试,都在焦急的等待成绩的公布.第i位同学希望在第ti天或之前得知所.有.课程的成绩.如果在 ...

  5. 一起来Fit TDMA over WiFi(3)

    4 TDMA调度者 TDMA调度者为Fit-TDMA的决策功能体,属于新开发功能模块,分调度员和被调度者2种角色,其中前者运行在AP等汇聚设备上,后者运行在CPE等接入类设备上:后者必须与前者配合才能 ...

  6. Prim算法的简单分析

    Prim算法主要的思路:将点集一分为二,通过找到两个点集之间的最短距离,来确定最小生成树,每次确定最短距离后,对两个点集进行更新. 具体的实现过程:难点就是如何找到两个点集之间的最短距离,这里设置两个 ...

  7. 如何避免 async/await 地狱

    简评:async/await 写着很爽,不过要注意这些问题. async/await 让我们摆脱了回调地狱,但是这又引入了 async/await 地狱的问题. 什么是 async/await 地狱 ...

  8. Python爬取腾讯新闻首页所有新闻及评论

    前言 这篇博客写的是实现的一个爬取腾讯新闻首页所有的新闻及其所有评论的爬虫.选用Python的Scrapy框架.这篇文章主要讨论使用Chrome浏览器的开发者工具获取新闻及评论的来源地址. Chrom ...

  9. 原生js移动端列表无缝间歇向上滚动

    在项目开发中尤其是在项目的活动页面的开发中,经常需要将用户的购买信息或中奖信息等以列表的形式展示在页面当中,并可以使其自动间歇向上滚动来达到在有限的区域内展示所有信息的目的.通常的做法是通过将列表父元 ...

  10. 11.QT-布局管理器(Box,Grid,Form,Stacked)

    布局管理器简介 QT中提供了对界面组件进行布局管理的类,用于对界面组件进行管理, 能够自动排列窗口中的界面组件 窗口大小变化后,便会自动更新界面组件的大小. 布局管理器可以自定义,从而达到更加个性化界 ...