BZOJ_4756_[Usaco2017 Jan]Promotion Counting_树状数组

Description

n只奶牛构成了一个树形的公司,每个奶牛有一个能力值pi,1号奶牛为树根。
问对于每个奶牛来说,它的子树中有几个能力值比它大的。

Input

n,表示有几只奶牛 n<=100000
接下来n行为1-n号奶牛的能力值pi
接下来n-1行为2-n号奶牛的经理(树中的父亲)

Output

共n行,每行输出奶牛i的下属中有几个能力值比i大

Sample Input

5
804289384
846930887
681692778
714636916
957747794
1
1
2
3

Sample Output

2
0
1
0
0
 

这道题的思路比较巧妙。
我们对整棵树进行DFS时每个点有两次处理的机会。
一次是刚刚遍历到,一次是子树的回溯。
分别求出两次能力值大于这个点的点的个数,用第二次的减去第一次的就是这个点的答案。
然后离散用树状数组处理一下。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 100050
struct A {
int num,id,v;
}a[N];
bool cmp1(const A &x,const A &y){return x.num>y.num; }
bool cmp2(const A &x,const A &y){return x.id<y.id; }
int n,head[N],to[N<<1],nxt[N<<1],cnt,ans[N],c[N];
inline void add(int u,int v) {
to[++cnt]=v;nxt[cnt]=head[u];head[u]=cnt;
}
void fix(int x,int v) {
for(;x<=n;x+=x&-x) c[x]+=v;
}
int inq(int x) {
int re=0;
for(;x;x-=x&-x) re+=c[x];
return re;
}
void dfs(int x,int y) {
int i;
fix(a[x].v,1);
int tmp=inq(a[x].v-1);
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
dfs(to[i],x);
}
}
ans[x]=inq(a[x].v-1)-tmp;
}
int main() {
//freopen("tt.in","r",stdin);
scanf("%d",&n);
int i,x,j;
for(i=1;i<=n;i++) scanf("%d",&a[i].num),a[i].id=i;
sort(a+1,a+n+1,cmp1); a[0].num=-245345;
for(i=1,j=0;i<=n;i++) { if(a[i].num!=a[i-1].num) j++; a[i].v=j; }
sort(a+1,a+n+1,cmp2);
for(i=2;i<=n;i++) {
scanf("%d",&x);
add(i,x); add(x,i);
}
dfs(1,0);
for(i=1;i<=n;i++) printf("%d\n",ans[i]);
}

BZOJ_4756_[Usaco2017 Jan]Promotion Counting_树状数组的更多相关文章

  1. [BZOJ4756][Usaco2017 Jan]Promotion Counting 树状数组

    4756: [Usaco2017 Jan]Promotion Counting Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 305  Solved: ...

  2. 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数

    题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...

  3. 【bzoj4756】[Usaco2017 Jan]Promotion Counting 离散化+树状数组

    原文地址:http://www.cnblogs.com/GXZlegend/p/6832263.html 题目描述 The cows have once again tried to form a s ...

  4. bzoj 4756: [Usaco2017 Jan]Promotion Counting【dfs+树状数组】

    思路还是挺好玩的 首先简单粗暴的想法是dfs然后用离散化权值树状数组维护,但是这样有个问题就是这个全局的权值树状数组里并不一定都是当前点子树里的 第一反应是改树状数组,但是显然不太现实,但是可以这样想 ...

  5. 树状数组 P3605 [USACO17JAN]Promotion Counting晋升者计数

    P3605 [USACO17JAN]Promotion Counting晋升者计数 题目描述 奶牛们又一次试图创建一家创业公司,还是没有从过去的经验中吸取教训--牛是可怕的管理者! 为了方便,把奶牛从 ...

  6. [bzoj4994][Usaco2017 Feb]Why Did the Cow Cross the Road III_树状数组

    Why Did the Cow Cross the Road III bzoj-4994 Usaco-2017 Feb 题目大意:给定一个长度为$2n$的序列,$1$~$n$个出现过两次,$i$第一次 ...

  7. BZOJ4994 [Usaco2017 Feb]Why Did the Cow Cross the Road III 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4994 题意概括 给定长度为2N的序列,1~N各处现过2次,i第一次出现位置记为ai,第二次记为bi ...

  8. BZOJ4990 [Usaco2017 Feb]Why Did the Cow Cross the Road II 动态规划 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4990 题意概括 有上下两行长度为 n 的数字序列 A 和序列 B,都是 1 到 n 的排列,若 a ...

  9. BZOJ4993 [Usaco2017 Feb]Why Did the Cow Cross the Road II 动态规划 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4993 题意概括 有上下两行长度为 n 的数字序列 A 和序列 B,都是 1 到 n 的排列,若 a ...

随机推荐

  1. java并发包分析之———concurrentHashMap

    一.Map体系 Hashtable是JDK 5之前Map唯一线程安全的内置实现(Collections.synchronizedMap不算).Hashtable继承的是Dictionary(Hasht ...

  2. Xshell 5 配置上传下载命令

    可以在官网https://www.netsarang.com/products/main.html 下载Xshell, 目前最新的版本已经到Xshell 6了 本人记录下安装的目录截图: 安装命令:  ...

  3. python函数与装饰器

    一.名字空间与作用域 1.名字空间 名字空间:赋值语句创建了约束,用来存储约束的dict被称为名字空间      赋值语句的行为:1.分别在堆和栈中创建obj与name                 ...

  4. C++堆栈问题

    编写C++中的两个类 一个只能在栈中分配空间 一个只能在堆中分配. 解答: (1)代码如下 (2)堆栈分配内存的介绍 一.一个经过编译的C/C++的程序占用的内存分成以下几个部分:1.栈区(stack ...

  5. Js 浅克隆详解

    浅克隆:不仅赋值,而且赋予了内存地址深度克隆:赋值,内存地址不同var a = [1,2,3]; var b = a; a = [4,5,6]; alert(b); //[1,2,3] 面试时被问到这 ...

  6. Android hybrid App项目构建和部分基本开发问题

    1.首先是选型:Cordova+Ionic Framework,调试测试环境是Ripple Emulator.开发环境其实可以随便选,我个人选择了Eclipse,当然Android SDK+ADT也是 ...

  7. BigDecimal常用的加减乘除算法、比较大小、保存两位小数点

    项目中涉及到了BigDecimal的加.减.乘.比较大小.精确度的问题.所以在此总结一下,方便以后复习. //加法 BigDecimal coins = new BigDecimal("0& ...

  8. JAVA库函数总结【持续更新】

    生成随机数: Math.random()是令系统随机选取大于等于 0.0 且小于 1.0 的伪随机 double 值. Random rand = newRandom(); rand.nextInt( ...

  9. myEclipse 配置tomcat清除缓存

    -Xms256m -Xmx512m -XX:MaxNewSize=64m -XX:MaxPermSize=128m

  10. 架构之高可用性(HA)集群(Keepalived)

    Keepalived简介 Keepalived是Linux下一个轻量级别的高可用解决方案.高可用(High Avalilability,HA),其实两种不同的含义:广义来讲,是指整个系统的高可用行,狭 ...